Skip to main content
Log in

MHD flow and heat transfer of a power-law non-Newtonian nanofluid (Cu–H2O) over a vertical stretching sheet

  • Published:
Journal of Applied Mechanics and Technical Physics Aims and scope

Abstract

A steady-state mixed convection boundary layer flow of an electrically conducting nanofluid (Cu–H2O) obeying a power-law model in the presence of an alternating magnetic field due to a stretching vertical heated sheet is investigated numerically through the use of Wolfram Mathematica. The surface stretching velocity and the surface temperature are assumed to vary as linear functions of the distance from the origin. A similarity solution is presented, which depends on the nanoparticle volume fraction, power-law parameter, magnetic field parameter, buoyancy convection parameter, and modified Prandtl number.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. G. Polidori, S. Fohanno, and C. T. Nguyen, “A Note on Heat Transfer Modelling of Newtonian Nanofluids in Laminar Free Convection,” Int. J. Thermal Sci. 46, 739–744 (2007).

    Article  Google Scholar 

  2. A. R. Moghadassi, S. M. Hosseini, D. Henneke, and A. Elkamel, “A Model of Nanofluids Effective Thermal Conductivity Based on Dimensionless Group,” J. Thermal Anal. Calorimetry 96, 81–84 (2009).

    Article  Google Scholar 

  3. S. M. Hosseini, A. R. Moghadassi, and D. E. Henneke, “A New Dimensionless Group Model for Determining the Viscosity of Nanofluids,” J. Thermal Anal. Calorimetry 100, 873–877 (2010).

    Article  Google Scholar 

  4. S. Jain, H. E. Patel, and S. K. Das, “Brownian Dynamic Simulation for the Prediction of Effective Thermal Conductivity of Nanofluid,” J. Nanopart Res. 11, 767–773 (2009).

    Article  Google Scholar 

  5. P. M. Congedo, S. Collura, and P. M. Congedo, “Modeling and Analysis of Natural Convection Heat Transfer in Nanofluids,” in Proc. of ASME Summer Heat Transfer Conf., Jacksonvill (USA), August 10–14, 2008 (2009), Vol. 3, pp. 569–579.

  6. B. Ghasemi and S. M. Aminossadati, “Natural Convection Heat Transfer in an Inclined Enclosure Filled with a Water–CuO Nanofluid,” Numer. Heat Transfer, A, Applications 55, 807–823 (2009).

    Article  ADS  Google Scholar 

  7. C. J. Ho, M. W. Chen, and Z. W. Li, “Effect of Natural Convection Heat Transfer of Nanofluid in an Enclosure due to Uncertainties of Viscosity and Thermal Conductivity,” in Proc. of ASME/JSME Thermal Engineering Summer Heat Transfer Conf. (2007), Vol. 1, pp. 833–841.

    Google Scholar 

  8. C. J. Ho, M. W. Chen, and Z. W. Li, “Numerical Simulation of Natural Convection of Nanofluid in a Square Enclosure: Effects due to Uncertainties of Viscosity and Thermal Conductivity,” Int. J. Heat Mass Transfer 51, 4506–4516 (2008).

    Article  MATH  Google Scholar 

  9. H. F. Oztop and E. Abu-Nada, “Numerical Study of Natural Convection in Partially Heated Rectangular Enclosures Filled with Nanofluids,” Int. J. Heat Fluid 29, 1326–1336 (2008).

    Article  Google Scholar 

  10. S. K. Das, S. U. S. Choi, W. Yu, T. Pradeep, Nanofluids: Science and Technology (Wiley, 2007).

    Book  Google Scholar 

  11. X.-Q. Wang and A. S. Mujumdar, “Heat Transfer Characteristics of Nanofluids: A Review,” Int. J. Thermal Sci. 46, 1–19 (2007).

    Article  Google Scholar 

  12. X.-Q. Wang and A. S. Mujumdar, “A Review on Nanofluids. 1. Theoretical and Numerical Investigations,” Brazil. J. Chem. Eng. 25, 613–630 (2008).

    Google Scholar 

  13. X.-Q. Wang and A. S. Mujumdar, “A Review on Nanofluids. 2. Experiments and Applications,” Brazil. J. Chem. Eng. 25, 631–648 (2008).

    Article  Google Scholar 

  14. S. Kaka¸c and A. Pramuanjaroenkij, “Review of Convective Heat Transfer Enhancement with Nanofluids,” Int. J. Heat Mass Transfer 52, 3187–3196 (2009).

    Article  MATH  Google Scholar 

  15. G. D. Brizzell and J. C. Slattery, “Non-Newtonian Boundary Layer Flow.” Chem. Eng. Sci. 17, 777–782 (1962).

    Article  Google Scholar 

  16. A. Acrivos, M. J. Shah, and E. E. Petersen, “Momentum and Heat Transfer in Laminar Boundary Layer Flows of Non-Newtonian Fluids Past External Surfaces,” AIChE J. 6, 312–317 (1960).

    Article  Google Scholar 

  17. A. Nakayama and H. Koyama, “An Analysis for Friction and Heat Transfer Characteristics of Power-Law Non- Newtonian Fluid Flows Past Bodies of Arbitrary Geometrical Configuration,” Wäme- und Stoffübertragung 22, 29–36 (1988).

    Article  ADS  Google Scholar 

  18. M. H. Cobble, “Magnetohydrodynamic Flow for a Non-Newtonian Power-Law Fluid Having a Pressure Gradient and Fluid Injection,” J. Eng. Math. 14, 47–55 (1980).

    Article  MATH  Google Scholar 

  19. B. Tashtoush, Z. Kodah, and A. Al-Ghasem, “On Thermal Boundary Layer of a Non-Newtonian Fluid on a Power-Law Stretching Surface of Variable Temperature with Suction or Injection,” Heat Mass Transfer 37, 459–465 (2001).

    Article  ADS  MATH  Google Scholar 

  20. H. I. Andersson and B. S. Dandapat, “Flow of a Power Law Fluid over a Stretching Sheet,” Stability Appl. Anal. Continuous Media 1, 339–347 (1991).

    Google Scholar 

  21. L. J. Crane, “Flow Past a Stretching Plate,” Z. Angew. Math. Phys. 21, 645–647 (1970).

    Article  Google Scholar 

  22. I. A. Hassanien, A. A. Abdullah, and R. S. R. Gorla, “Flow and Heat Transfer in a Power Law Fluid over a Non-Isothermal Stretching Sheet,” Math. Comput. Model. 28, 105–116 (1998).

    Article  MathSciNet  MATH  Google Scholar 

  23. A. K. Sahu, M. N. Mathur, P. Chaturani, and S. B. Saxena, “Momentum and Heat Transfer from a Continuous Moving Surface to a Power Law Fluid,” Acta Mech. 142, 119–131 (2000).

    Article  MATH  Google Scholar 

  24. J. P. Denier and P. P. Dabrowski, “On the Boundary Layer Equations for Power Law Fluids,” Proc. Roy. Soc. London, Ser. A 460, 3143–3158 (2004).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. K. V. Prasad, P. S. Datti, and K. Vajravelu, “Hydromagnetic Flow and Heat Transfer of a Non-Newtonian Power Law Fluid over a Vertical Stretching Sheet,” Int. J. Heat Mass Transfer 53, 879–888 (2010).

    Article  MATH  Google Scholar 

  26. M. C. Ece. “Free Convection Flow about a Cone under Mixed Thermal Boundary Conditions and a Magnetic Field,” Appl. Math. Modelling 29, 1121–1134 (2005).

    Article  MATH  Google Scholar 

  27. M. S. Abel, E. Sanjayanand, and M. M. Nandeppanavar, “Viscoelastic MHD Flow and Heat Transfer over a Stretching Sheet with Viscous and Ohmic Dissipations,” Comm. Nonlinear Sci. Numer. Simulat. 13, 1808–1821 (2008).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. O. A. Bég, A. Y. Bakier, V. R. Prasad, et al., “Nonsimilar, Laminar, Steady, Electrically-Conducting Forced Convection Liquid Metal Boundary Layer Flow with Induced Magnetic Field Effects,” Int. J. Thermal Sci. 48, 1596–1606 (2009).

    Article  Google Scholar 

  29. M. Kumari and G. Nath, “Analytical Solution of Unsteady Three-Dimensional MHD Boundary Layer Flow and Heat Transfer Due to Impulsively Stretched Plane Surface,” Comm. Nonlinear Sci. Numer. Simulat. 14, 3339–3350 (2009).

    Article  ADS  MATH  Google Scholar 

  30. Kumaran V., A. V. Kumar, and I. Pop, “Transition of MHD Boundary Layer Flow Past a Stretching Sheet,” Comm. Nonlinear Sci. Numer. Simulat. 15, 300–311 (2010).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. K. V. Prasad, D. Pal, V. Umesh, and N. S. P. Rao, “The Effect of Variable Viscosity on MHD Viscoelastic Fluid Flow and Heat Transfer over a Stretching Sheet,” Comm. Nonlinear Sci. Numer. Simulat. 15, 331–344 (2010).

    Article  ADS  MATH  Google Scholar 

  32. H. Tabaei, M. A.Moghimi, A. Kimiaeifar, and M. A. Moghimi, “Homotopy Analysis and Differential Quadrature Solution of the Problem of Free-Convective Magnetohydrodynamic Flow over a Stretching Sheet with the Hall Effect and Mass Transfer Taken into Account,” J. Appl. Mech. Tech. Phys. 52 (4), 624–636 (2011).

    Article  ADS  MATH  Google Scholar 

  33. R. Kandasamy, I. Muhaimin, and G. Kamachi, “Scaling Group Transformation for the Effect of Temperature- Dependent Nanofluid Viscosity on an MHD Boundary Layer Past a Porous Stretching Surface,” J. Appl. Mech. Tech. Phys. 52 (6), 931–940 (2011).

    Article  ADS  MATH  Google Scholar 

  34. J. Nagler, “Laminar Boundary Layer Model for Power-Law Fluids with Non-Linear Viscosity,” WSEAS Transactions Fluid Mech. 9, 19–25 (2014).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Ferdows.

Additional information

Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 57, No. 4, pp. 34–42, July–August, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ferdows, M., Hamad, M.A.A. MHD flow and heat transfer of a power-law non-Newtonian nanofluid (Cu–H2O) over a vertical stretching sheet. J Appl Mech Tech Phy 57, 603–610 (2016). https://doi.org/10.1134/S0021894416040040

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021894416040040

Keywords

Navigation