Skip to main content
Log in

Flows, strains, and the formation of joints in oblique collision of metal plates

  • Published:
Journal of Applied Mechanics and Technical Physics Aims and scope

Abstract

The processes of high-velocity oblique collision of metal plates which lead to the formation of their joints (seizure) are considered. It is found that the cleaning of the plate surface necessary for seizure results from a jet flow (particle stream), whose source is at least one of the welded materials or an interlayer of ductile material located in the initial region of collision. It is shown that additional cleaning may occur due to the emergence of rotating microregions in intense gradient flows localized in the joint area; seizure on cleaned surfaces is due to reduction of the surface energy of the system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. A. Deribas, Physics of Hardening and Welding by Explosion (Nauka, Novosibirsk, 1980) [in Russian].

    Google Scholar 

  2. A. A. Deribas, “Acceleration of Metal Plates by a Tangential Detonation Wave,” Prikl. Mekh. Tekh. Fiz. 41 (5), 68–74 (2000) [J. Appl. Mech. Tech. Phys. 41 (5), 824-830 (2000)].

    Google Scholar 

  3. I. D. Zakharenko, Explosion Welding of Metals (Nauka Tekhnika, Minsk, 1990) [in Russian].

    Google Scholar 

  4. V. I. Lysak and S. V. Kuz’min, Explosion Welding (Mashinostroenie-1, Moscow, 2005) [in Russian].

    Google Scholar 

  5. I. V. Yakovlev and V. V. Pai, Explosion Welding of Metals: Annotation References of Russian and Foreign Works for 50 Years (Izd. Sib. Otd. Ross. Akad. Nauk, Novosibirsk, 2013) [in Russian].

    Google Scholar 

  6. M. N. Kazeev, V. S. Koidan, V. F. Kozlov, and Yu. S. Tolstov, “Magnetic Pulse Welding in Plane Geometry,” Prikl. Mekh. Tekh. Fiz. 54 (6), 38–44 (2013) [J. Appl. Mech. Tech. Phys. 54 (6), 894-899 (2013)].

    Google Scholar 

  7. G. R. Cowan and A. N. Holtzman, “Flow Configurations in Colliding Plates: Explosive Bonding,” J. Appl. Phys. 34 (4), Pt. 1, 928–939 (1963).

    Article  ADS  Google Scholar 

  8. A. N. Kriventsov and V. S. Sedykh, “Role of Plastic Deformation of Metals in the Zone of Joining by Explosion Welding,” Fiz. Khim. Obrab. Mater., No. 1, 132–141 (1969).

    Google Scholar 

  9. M. P. Bondar’ and V. M. Ogolikhin, “Plastic Deformation and Bond Formation during Explosive Welding of Copper Plates,” Fiz. Goreniya Vzryva 24 (1), 122–127 (1988) [Combust., Expl., Shock Waves 24 (1), 113-117 (1988)].

    Google Scholar 

  10. M. P. Bondar’, “Localization of Plastic Deformation on Contacts, Determining the Formation of a Strong Joint,” Fiz. Goreniya Vzryva 31 (5), 122–128 (1988) [Combust., Expl., Shock Waves 31 (5), 612-616 (1988)].

    Google Scholar 

  11. S. Yu. Bondarenko, D. V. Rikhter, O. L. Pervukhina, and L. B. Pervukhin, “Determining the Parameters of Shock-Compressed Gas in a Welding Gap in Front of a Contact Point in Explosion Cladding,” Avtomat. Svarka, No. 11, 46–48 (2009).

    Google Scholar 

  12. L. B. Pervukhin, O. L. Pervukhina, S. Yu. Bondarenko, and Yu. S. Agaurov, “On Interaction of Shock- Compressed Gas and Metallic Surfaces in Weld Gap,” in Explosive Production of New Materials: Science, Technology, Business, and Innovations, Ed. by A. A. Deribas and Yu. B. Scheck (Nokturn, Cracow, 2014), pp. 154, 155.

    Google Scholar 

  13. N. Gane, P. F. Pfaelzer, and D. Tabor, “Adhesion Between Clear Surfaces at Light Loads,” in Proc. Roy. Soc. London, Ser. A. 340, 495–517 (1974).

    Article  ADS  Google Scholar 

  14. K. I. Johnson and D. V. Keller, “Effect of Contamination on the Adhesion of Metallic Couples in Ultra-High Vacuum,” J. Appl. Phys. 38 (4), 1896–1904 (1967).

    Article  ADS  Google Scholar 

  15. O. Nishikawa and K. D. Rendulic, “Some FIM Observations on Cold-Welding of Metals,” Surface Sci. 26 (2), 677–682 (1971).

    Article  ADS  Google Scholar 

  16. A. Merstallinger, M. Sales, E. Semerad, and B. D. Dunn, Assessment of Sold Welding Between Separable Contact Surfaces Due to Impact and Fretting under Vacuum (ESA Comm. Product. Office, Noordwijk, 2009).

    Google Scholar 

  17. Yu. L. Krasulin, Interaction of Metals with Semiconductors in a Solid Phase (Nauka, Moscow, 1971) [in Russian].

    Google Scholar 

  18. A. P. Semenov, “Seizure of Metals and Methods of Its Prevention under Friction,” Trenie Iznos 1 (2), 236–246 (1980).

    Google Scholar 

  19. E. S. Karakozov, Pressure Welding of Metals (Mashinostroenie, Moscow, 1986) [in Russian].

    Google Scholar 

  20. V. D. Kuznetsov, Physics of Cutting and Friction of Metals and Crystals: Selected papers (Nauka, Moscow, 1977) [in Russian].

    Google Scholar 

  21. I. V. Kragel’skii, I. M. Lyubarskii, and A. A. Guslyakov, Friction and Wear in Vacuum (Mashinostroenie, Moscow, 1973) [in Russian].

    Google Scholar 

  22. F. P. Bowden and D. Tabor, The Friction and Lubrication of Solids (Oxford Univ. Press, New York, 1960).

    Google Scholar 

  23. S. K. Godunov, A. A. Deribas, and V. I. Mali, “Influence of Material Viscosity on the Jet Formation Process during Collisions of Metal Plates,” Fiz. Goreniya Vzryva 11 (1), 3–18 (1975) [Combust., Expl., Shock Waves 11 (1), 1-13 (1975)].

    Google Scholar 

  24. S. A. Kinelovskii and Yu. A. Trishin, “Physical Aspects of the Hollow-Charge Effect,” Fiz. Goreniya Vzryva 16 (5), 26–40 (1980) [Combust., Expl., Shock Waves 16 (5), 504-515 (1980)].

    ADS  Google Scholar 

  25. S. P. Kiselev and V. I. Mali, “Numerical and Experimental Modeling of Jet Formation during a High-Velocity Oblique Impact of Metal Plates,” Fiz. Goreniya Vzryva 48 (2), 100–112 (2012) [Combust., Expl., Shock Waves 48 (2), 214-225 (2012)].

    Google Scholar 

  26. S. K. Godunov, S. P. Kiselev, I. M. Kulikov, and V. I. Mali, Simulation of Shock-Wave Processes in Elastic-Plastic Materials at Various (Atomic, Meso-, and Thermodynamic) Structural Levels (Institute of Computer Sciences, Izhevsk, 2014) [in Russian].

    Google Scholar 

  27. B. S. Zlobin, “Explosion Welding of Steel with Aluminum,” Fiz. Goreniya Vzryva 38 (3), 137–140 (2002) [Combust., Expl., Shock Waves 38 (3), 374-377 (2002)].

    MathSciNet  Google Scholar 

  28. U. Richter and J. F. Roth, “Grundlagen und Anvendung des Sprengplatierens,” Naturwissenschaften 10, 487–493 (1970).

    Article  ADS  Google Scholar 

  29. B. S. Zlobin, V. V. Kiselev, and A. I. Gulidov, “Flow of Materials in the Gap Between Colliding Plates,” in Treatment of Materials by Pulsed Loads (Special Design Bureau of High-Rate Hydrodynamics, Sib. Branch, Russian Acad. of Sci., Novosibirsk, 1990), pp. 216–224.

    Google Scholar 

  30. A. A. Deribas, A. I. Gulidov, B. S. Zlobin, et al., “On the Oblique Collisions of the Metallic Plates at Extreme Conditions,” in Recent Trends in High Pressure Research, Proc. of the 13th AIRAPT Int. Conf. on High Pressure Science and Technology, Bangalore, India, October 7-11, 1991 (Oxford and IBH Publ. Co., Oxford 1992), pp. 712–718.

    Google Scholar 

  31. A. A. Deribas and I. D. Zakharenko, “Surface Effects with Oblique Collisions Between Metallic Plates,” Fiz. Goreniya Vzryva 10 (3), 409–421 (1974) [Combust., Expl., Shock Waves 10 (3), 358-367 (1974)].

    Google Scholar 

  32. B. Zlobin, V. Sil’vestrov, A. Shtertser, et al., “Enhancement of Explosive Welding Possibilities by the Use of Emulsion Explosive,” Arch. Metallurgy Mater. 59 (4), 1587–1592 (2014).

    Google Scholar 

  33. N. S. Kozin, V. I. Mali, and M. V. Rubtsov, “Tangential Explosion with Collapse of a Bimetallic Casing,” Fiz. Goreniya Vzryva 13 (4), 619–625 (1977) [Combust., Expl., Shock Waves 13 (4), 529-534 (1977)].

    Google Scholar 

  34. M. Hammerschmidt and H. Kreue, “Microstructure and Bonding Mechanism in Explosive Welding,” in Shock Waves and High-Strain-Rate Phenomena in Metals, Proc. of the Int. Conf., Albuquerque, June 22-26, 1980 (Plenum Press, New York, 1981), pp. 961–973.

    Google Scholar 

  35. H. Paul, L. Litinska-Dobrynska, M. Miszczyk, and M. Prazmovski, “Microstructure and Phase Transitions Near the Bonding Zone of Al/Cu Clad Manufactured by Explosive Welding,” Arch. Metallurgy Mater. 57 (4), 1151–1162 (2012).

    Google Scholar 

  36. V. B. Rybin, Large Plastic Deformations and Fracture of Metals (Metallurgiya, Moscow, 1986) [in Russian].

    Google Scholar 

  37. A. A. Shtertser, “Rotational Components of Deformation in Metal Bodies under Dynamic Loading,” Fiz. Goreniya Vzryva 34 (2), 129–133 (1998) [Combust., Expl., Shock Waves 34 (2), 234-238 (1998)].

    Google Scholar 

  38. S. P. Kiselev and V. P. Kiselev, “Numerical Simulation of Deposition of Nanoparticles by the Cold Gas Spraying Method,” in Interaction of Highly Concentrated Flows of Energy with Materials in Advanced Technologies and Materials: Proc. of the 5th All-Russia Conf., Novosibirsk, March 26-29, 2013 (Parallel’, Novosibirsk, 2013), Vol. 1, pp. 152–156.

    Google Scholar 

  39. A. A. Berdychenko, B. S. Zlobin, L. B. Pervukhin, and A. A. Shtertser, “Possible Ignition of Particles Ejected into the Gap in Explosive Welding of Titanium,” Fiz. Goreniya Vzryva 39 (2), 128–136 (2003) [Combust., Expl., Shock Waves 39 (2), 232-239 (2003)].

    Google Scholar 

  40. A. Oberg, N. Martensson, and J.-A. Schweitz, “Fundamental Aspects of Formation and Stability of Explosive Welds,” Metallurg. Trans. A 16 (5), 841–852 (1985).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Shtertser.

Additional information

Original Russian Text © A.A. Shtertser, B.S. Zlobin.

Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 56, No. 5, pp. 222–231, September–October, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shtertser, A.A., Zlobin, B.S. Flows, strains, and the formation of joints in oblique collision of metal plates. J Appl Mech Tech Phy 56, 927–935 (2015). https://doi.org/10.1134/S0021894415050211

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021894415050211

Keywords

Navigation