Skip to main content
Log in

Deformation and fracture mechanisms and structural changes in coarse-grained copper under shock-wave loading

  • Published:
Journal of Applied Mechanics and Technical Physics Aims and scope

Abstract

Results of experiments on shock-wave deformation of M2 copper under uniaxial loading are presented. Light, scanning, and transmission electron microscopy methods are used to reveal specific features of mechanisms of deformation and fracture of copper during the formation of a main spall crack. The parameters of spall strength, damage, and self-similarity of the spall crack contour are determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. B. K. Barakhtin, Yu. I. Meshcheryakov, and G. G. Savenkov, “Statistical Characteristics of Multiple Fracture of Metal Targets under Dynamic Loading and Their Relationship with Mechanical Parameters of Materials,” Zh. Tekh. Fiz. 80(1), 79–84 (2010).

    Google Scholar 

  2. Yu. V. Bat’kov, O. N. Ignatova, I. N. Kondrokhina, et al., “Specific Features of Damage Generation under Intense Loading of Copper,” Fiz. Tverd. Tela 53(4), 716–720 (2011).

    Google Scholar 

  3. A. G. Ivanov, “On Possible Causes of Brittle Fracture,” Prikl. Mekh. Tekh. Fiz. 29(3), 137–141 (1988) [J. Appl. Mech. Tech. Phys. 29 (3), 439–443 (1988)].

    Google Scholar 

  4. S. A. Atroshenko, S. A. Gladyshev, and Yu. I. Meshcheryakov, “Study of the Mechanisms of Changing the Scale of Structural Levels of Fracture of Dynamically Loaded Media,” in Report of the 4th All-Union Conference on Detonation (Telavi, 1988), Vol. 1, pp. 286–292.

    Google Scholar 

  5. Physical Mesomechanics and Computational Design of Materials, Ed. by V. E. Panin (Nauka, Sib. Izdat. Firma, Novosibirsk, 1995), Vol. 1 [in Russian].

    Google Scholar 

  6. Yu. I. Meshcheryakov and A. K. Divakov, Interference Method for Detecting the Particle Velocity Heterogeneousity in Elastoplastic Loading Waves in Solids (Leningrad, 1989) [in Russian].

    Google Scholar 

  7. B. Mandelbrot, The Fractal Geometry of Nature (W. H. Freeman and Co., 1982).

    MATH  Google Scholar 

  8. G. G. Savenkov, “Fractal-Cluster Model of Spall Fracture,” Zh. Tekh. Fiz. 72(12), 44–48 (2002).

    MathSciNet  Google Scholar 

  9. B. K. Barakhtin and G. G. Savenkov, “Relationship Between Spall Characteristics and the Dimension of Fractal Fracture Structures,” Prikl. Mekh. Tekh. Fiz. 50(6), 61–69 (2009) [J. Appl. Mech. Tech. Phys. 50 (6), 965–971 (2009)].

    Google Scholar 

  10. B. L. Glushak, I. R. Trunin, S. A. Novikov., and A. I. Ruzanov, “Numerical Simulation of Spall Fracture of Metals,” in Fractals in Applied Physics (All-Russian Research Institute of Experimental Physics, Arzamas-16, 1995), pp. 59–123.

    Google Scholar 

  11. G. I. Kanel’, S. G. Sugak, and V. E. Fortov, “Spall Fracture Models,” Probl. Prochn., No. 8, 40–44 (1983).

    Google Scholar 

  12. G. G. Savenkov and N. N. Vasil’ev, “Plasticity and Strength of Copper in High-Rate Deformation,” Probl. Prochn., No. 10, 47–52 (1993).

    Google Scholar 

  13. Yu. I. Meshcheryakov, N. I. Zhigacheva, A. K. Divakov, I. P. Makarevich, and B. K. Barakhtin, “Transition of Metals into a Structurally Unstable State under Shock-Wave Loading,” Prikl. Mekh. Tekh. Fiz. 51(5), 132–146 (2010) [J. Appl. Mech. Tech. Phys. 51 (5), 732–743 (2010)].

    Google Scholar 

  14. B. K. Barakhtin, Yu. I. Meshcheryakov, and G. G. Savenkov, “Dynamic and Fractal Properties of SP-28 Steel under High-Rate Loading,” Zh. Tekh. Fiz. 68(10), 43–52 (1998).

    Google Scholar 

  15. Fracture of Multiscale Objects under Explosion, Ed. by A. G. Ivanov. (Institute of Experimental Physics, Sarov, 2001) [in Russian].

    Google Scholar 

  16. G. G. Savenkov, “Mechanisms of Deformation and Fracture of Plastic Bodies and Solids in High-Rate Interaction” Doct. Disseration in Tech. Sci. (St. Petersburg, 2003) [in Russian].

    Google Scholar 

  17. Sh. Kh. Khannanov, “Structural Turbulence in Amorphous and Crystalline Solids,” in Disclinations and Rotational Deformation of Solids, Ed. by A. E. Romanov (Ioffe Phys. Tech. Inst., Leningrad, 1990) [in Russian]

    Google Scholar 

  18. A. Carpinteri, N. Pugno, and S. Puzzi, “Strength vs. Toughness Optimization of Microstructured Composities,” Chaos, Solitons Fractals 39, 1210–1223 (2009).

    Article  MATH  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. G. Savenkov.

Additional information

Original Russian Text © G.G. Savenkov, Yu.I. Meshcheryakov, B.K. Barakhtin, N.V. Lebedeva.

__________

Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 55, No. 5, pp. 195–203, September–October, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Savenkov, G.G., Meshcheryakov, Y.I., Barakhtin, B.K. et al. Deformation and fracture mechanisms and structural changes in coarse-grained copper under shock-wave loading. J Appl Mech Tech Phy 55, 896–903 (2014). https://doi.org/10.1134/S0021894414050198

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021894414050198

Keywords

Navigation