Skip to main content
Log in

Corona effect in AA collisions at the LHC

  • Fields, Particles, and Nuclei
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

Following our earlier finding based on RHIC data on the dominant jet production from nucleus corona region, we reconsider this effect in nucleus–nucleus collisions at the LHC energies. Our hypothesis was based on experimental data, which raised the idea of a finite formation time for the produced medium. At the RHIC energy and in low-density corona region, this time reaches about 2 fm/c. Following this hypothesis, the nuclear modification factor R AA at high p t should be independent on particle momentum, and the azimuthal anisotropy of high p t particles, v 2, should be finite. A separate prediction held that, at the LHC energy, the formation time in the corona region should be about 1 fm/c. New LHC data show that R AA is not flat and is rising with p t . We add to our original hypothesis an assumption that a fast parton traversing the produced medium loses the fixed portion of its energy. A shift of about 7 GeV from the original power law p −6 production cross section in pp explains well all the observed R AA dependencies. The shift of about 7 GeV is also valid at the RHIC energy. We also show that the observed at the LHC dependence of v 2 at high p t and our previous predictions agree.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. V. S. Pantuev, JETP Lett. 85, 104 (2007); arXiv:hepph/0506095.

    Article  ADS  Google Scholar 

  2. V. S. Pantuev, in Proceedings of the 22nd Winter Workshop on Nuclear Dynamics WWND 2006; arXiv: hepph/0604268.

  3. H. Satz, Nucl. Phys. A 642, 130 (1998); hepph/9805418.

    Article  ADS  Google Scholar 

  4. N. Armesto, N. Borghini, S. Jeon, U. A. Wiedemann, S. Abreu, and S. V. Akkelin, J. Phys. G 35, 054001 (2008); arXiv:0711.0974 [hep-ph].

    Article  Google Scholar 

  5. C. Patrignani, K. Agashe, G. Aielli, et al. (Part. Data Group), Chin. Phys. C 40, 100001 (2016).

    Article  ADS  Google Scholar 

  6. K. Aamodt, A. A. Quintana, D. Adamov, et al. (ALICE Collab.), Phys. Lett. B 696, 30 (2011); arXiv:1012.1004 [nucl-ex].

    Article  ADS  Google Scholar 

  7. S. Chatrchyan, V. Khachatryan, A. M. Sirunyan, et al. (CMS Collab.), Phys. Lett. B 712, 176 (2012); arXiv:1202.5022 [nucl-ex].

    Article  ADS  Google Scholar 

  8. G. Aad, B. Abbott, J. Abdallah, et al. (ATLAS Collab.), J. High Energy Phys. 1509, 050 (2015); arXiv:1504.04337[hep-ex]].

    Article  ADS  Google Scholar 

  9. B. B. Abelev, J. Adam, D. Adamova, et al. (ALICE Collab.), Eur. Phys. J. C 74, 3108 (2014); arXiv:1405.3794 [nucl-ex].

    Article  ADS  Google Scholar 

  10. V. Khachatryan, A. M. Sirunyan, A. Tumasyan, et al. (CMS Collab.), J. High Energy Phys. (in press); arXiv:1611.01664 [nucl-ex].

  11. A. Adare, S. S. Adler, S. Afanasiev, et al. (PHENIX Collab.), Phys. Rev. Lett. 101, 232301 (2008); arXiv:0801.4020 [nucl-ex].

    Article  ADS  Google Scholar 

  12. S. Chatrchyan, V. Khachatryan, A. M. Sirunyan, et al. (CMS Collab.), Phys. Rev. Lett. 109, 022301 (2012); arXiv:1204.1850 [nucl-ex].

    Article  ADS  Google Scholar 

  13. B. Alver, B. B. Back, M. D. Baker, et al. (PHOBOS Collab.), Phys. Rev. Lett. 98, 242302 (2007); nuclex/0610037].

    Article  ADS  Google Scholar 

  14. J. Adam, A. Alkin, V. Chelnokov, et al. (ALICE Collab.), Phys. Lett. B 753, 511 (2016); arXiv:1509.07334[nucl-ex].

    Article  ADS  Google Scholar 

  15. G. Aad, B. Abbott, J. Abdallah, et al. (ATLAS Collab.), Phys. Rev. Lett. 111, 152301 (2013); arXiv:1306.6469 [hep-ex].

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. S. Pantuev.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pantuev, V.S. Corona effect in AA collisions at the LHC. Jetp Lett. 105, 631–634 (2017). https://doi.org/10.1134/S0021364017100022

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364017100022

Navigation