Skip to main content
Log in

Full replica symmetry breaking in p-spin-glass-like systems

  • Condensed Matter
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

It is shown that continuously changing the effective number of interacting particles in p-spin-glass-like model allows describing the transition from the full replica symmetry breaking glass solution to stable first replica symmetry breaking glass solution in the case of non-reflective symmetry diagonal operators used instead of Ising spins. As an example, axial quadrupole moments in place of Ising spins are considered and the boundary value \({p_{{c_1}}} \cong 2.5\) is found.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. D. Sherrington and S. Kirkpatrick, Phys. Rev. Lett. 32, 1972 (1975); S. Kirkpatrick and D. Sherrington, Phys. Rev. B 17, 4384 (1978).

    Google Scholar 

  2. G. Parisi, J. Phys. A: Math. Theor. 13, L115 (1980).

    Article  ADS  Google Scholar 

  3. M. Mezard, G. Parisi, and M. Virasoro, Spin Glass Theory and Beyond (World Scientific, Singapore, 1987).

  4. E. Gardner, Nuc. Phys. B 257, 747 (1985).

    Article  ADS  Google Scholar 

  5. P. Charbonneau, Y. Jin, G. Parisi, C. Rainone, B. Seoane, and F. Zamponi, Phys. Rev. E 92, 012316 (2015).

    Article  ADS  Google Scholar 

  6. A. Crisanti, H. Horner, and H. Sommers, Z. Phys. B 92, 257 (1993).

    Article  ADS  Google Scholar 

  7. T. R. Kirkpatrick, D. Thirumalai, and P. G. Wolynes, Phys. Rev. A 40, 1045 (1989).

    Article  ADS  Google Scholar 

  8. T. R. Kirkpatrick and D. Thirumalai, Phys. Rev. Lett. 58, 2091 (1987), Phys. Rev. B 36, 5388 (1987).

    Article  ADS  MathSciNet  Google Scholar 

  9. S. Franz, H. Jacquin, G. Parisi, P. Urbani, and F. Zamponi, J. Chem. Phys. 138, 12A540 (2013).

    Article  Google Scholar 

  10. F. Caltagirone, U. Ferrari, L. Leuzzi, G. Parisi, F. Ricci-Tersenghi, and T. Rizzo, Phys. Rev. Lett. 108, 085702 (2012).

    Article  ADS  Google Scholar 

  11. T. Rizzo, Eur. Phys. Lett. 106, 56003 (2014).

    Article  ADS  Google Scholar 

  12. T. Rizzo, Phys. Rev. E 87, 022135 (2013).

    Article  ADS  Google Scholar 

  13. G. Parisi and F. Zamponi, Rev. Mod. Phys. 82, 789 (2010).

    Article  ADS  Google Scholar 

  14. L. Berthier and G. Biroli, Rev. Mod. Phys. 83, 58 (2011).

    Article  ADS  Google Scholar 

  15. P. G. Wolynes and V. Lubchenko, Structural Glasses and Supercooled Liquids: Theory, Experiment, and Applications (Wiley, New York, 2012).

    Book  Google Scholar 

  16. U. Buchenau, J. Phys. C 15, S955 (2003).

    Google Scholar 

  17. V. Alba, S. Inglis, and L. Pollet, Phys. Rev. B 93, 094404 (2016).

    Article  ADS  Google Scholar 

  18. T. I. Schelkacheva, E. E. Tareyeva, and N. M. Chtchelkatchev, Phys. Rev. E 79, 021105 (2009).

    Article  ADS  Google Scholar 

  19. T. I. Schelkacheva, E. E. Tareyeva, and N. M. Chtchelkatchev, Phys. Rev. B 82, 134208 (2010).

    Article  ADS  Google Scholar 

  20. T. I. Schelkacheva, E. E. Tareyeva, and N. M. Chtchelkatchev, Phys. Rev. B 76, 195408 (2007).

    Article  ADS  Google Scholar 

  21. E. A. Lutchinskaia and E. E. Tareyeva, Phys. Rev. B 52, 366 (1995).

    Article  ADS  Google Scholar 

  22. N. M. Chtchelkatchev, V. N. Ryzhov, T. I. Schelkacheva, and E. E. Tareyeva, Phys. Lett. A 329, 244 (2004).

    Article  ADS  Google Scholar 

  23. K. Walasek, J. Phys. A 28, L497 (1995).

    Article  ADS  MathSciNet  Google Scholar 

  24. E. E. Tareyeva, T. I. Schelkacheva, and N. M. Chtchelkatchev, Theor. Math. Phys. 160, 1190 (2009).

    Article  Google Scholar 

  25. E. E. Tareyeva, T. I. Schelkacheva, and N. M. Chtchelkatchev, Theor. Math. Phys. 155, 812 (2008).

    Article  Google Scholar 

  26. E. E. Tareyeva, T. I. Schelkacheva, and N. M. Chtchelkatchev, J. Phys. A 47, 075002 (2014).

  27. T. I. Schelkacheva and N. M. Chtchelkatchev, J. Phys. A 44, 445004 (2011).

    Article  ADS  Google Scholar 

  28. T. I. Schelkacheva, E. E. Tareyeva, and N. M. Chtchelkatchev, Phys. Lett. A 358, 222 (2006).

    Article  ADS  Google Scholar 

  29. E. E. Tareyeva, T. I. Schelkacheva, and N. M. Chtchelkatchev, Theor. Math. Phys. 182, 437 (2015).

    Article  Google Scholar 

  30. E. E. Tareyeva, T. I. Schelkacheva, and N. M. Chtchelkatchev, Phys. Lett. A 377, 507 (2013).

    Article  ADS  MathSciNet  Google Scholar 

  31. T. I. Schelkacheva, E. E. Tareyeva, and N. M. Chtchelkatchev, Phys. Rev. E 89, 042149 (2014).

    Article  ADS  Google Scholar 

  32. T. Temesvari, C. De Dominicis, and I. R. Pimentel, Eur. Phys. J. B 25, 361 (2002).

    Article  ADS  Google Scholar 

  33. T. Temesvari, Nucl. Phys. B 829, 534 (2010).

    Article  ADS  MathSciNet  Google Scholar 

  34. A. A. Crisanti and C. de Dominicis, J. Phys. A 43, 055002 (2010).

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. M. Chtchelkatchev.

Additional information

The article is published in the original. Supplementary materials are available for this article at DOI: 10.1134/S0021364017040051 and are accessible for authorized users.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schelkacheva, T.I., Chtchelkatchev, N.M. Full replica symmetry breaking in p-spin-glass-like systems. Jetp Lett. 105, 232–237 (2017). https://doi.org/10.1134/S0021364017040051

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364017040051

Navigation