Skip to main content
Log in

PT-symmetry breaking in resonant tunneling heterostructures

  • Condensed Matter
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

We present fermionic model based on symmetric resonant tunneling heterostructure, which demonstrates spontaneous symmetry breaking in respect to combined operations of space inversion (P) and time reversal (T). PT-symmetry breaking manifests itself in resonance coalescence (collapse of resonances). We show that resonant energies are determined by eigenvalues of auxiliary pseudo-Hermitian PT-invariant Hamiltonian.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Nambub, Rev. Mod. Phys. 81, 1015 (2009).

    Article  ADS  Google Scholar 

  2. Y. Lemonik, I. L. Aleiner, C. Toke, and V. I. Fal’ko, Phys. Rev. B 82, 201408 (2010).

  3. Y. Saito and H. Hyuga, Rev. Mod. Phys. 85, 603 (2013).

    Article  ADS  Google Scholar 

  4. B. Waclaw, J. Sopik, and W. Janke, Phys. Rev. Lett. 103, 080602 (2009).

    Article  ADS  Google Scholar 

  5. H. Ohadi, E. Kammann, T. C. H. Liew, K. G. Lagoudakis, A. V. Kavokin, and P. G. Lagoudakis, Phys. Rev. Lett. 109, 016404 (2012).

    Article  ADS  Google Scholar 

  6. K. Sun, H. Yao, E. Fradkin, and S. A. Kivelson, Phys. Rev. Lett. 103, 046811 (2009).

    Article  ADS  Google Scholar 

  7. C. M. Bender and S. Boettcher, Phys. Rev. Lett. 80, 5243 (1998).

    Article  ADS  MathSciNet  Google Scholar 

  8. C. M. Bender, S. Boettcher, and P. N. Meisinger, J. Math. Phys. 40, 2201 (1999).

    Article  ADS  MathSciNet  Google Scholar 

  9. C. M. Bender, Rep. Prog. Phys. 70, 947 (2007).

    Article  ADS  Google Scholar 

  10. A. Mostafazadeh, J. Geom. Methods Mod. Phys. 7, 1191 (2010).

    Article  MathSciNet  Google Scholar 

  11. T. Kato, Perturbation Theory for Linear Operators (Springer, Berlin, 1995), p. 64.

  12. W. D. Heiss, J. Phys. A: Math. Theor. 45, 444016 (2012).

    Article  ADS  MathSciNet  Google Scholar 

  13. M. V. Berry, Czech. J. Phys. 54, 1039 (2004).

    Article  ADS  Google Scholar 

  14. A. Guo, G. J. Salmo, D. Duchesne, R. Morandotti, M. Volatier-Ravat, V. Aimez, G. A. Siviloglou, and D. N. Christodoulides, Phys. Rev. Lett. 103, 093902 (2009).

    Article  ADS  Google Scholar 

  15. L. Feng, M. Ayache, J. Huang, Y.-L. Xu, M.-H. Lu, Y.-F. Chen, Y. Fainman, and A. Scherer, Science 333, 729 (2011).

    Article  ADS  Google Scholar 

  16. M. Liertzer, L. Ge, A. Cerjan, A. D. Stone, H. E. Türeic, and S. Rotter, Phys. Rev. Lett. 108, 173901 (2012).

    Article  ADS  Google Scholar 

  17. M. Brandstetter, M. Liertzer, C. Deutsch, P. Klang, J. Schöberl, H. E. Türeci, G. Strasser, K. Unterrainer, and S. Rotter, Nature Commun. 5, 4034 (2014).

    Article  ADS  Google Scholar 

  18. Y. D. Chong, L. Ge, and A. D. Stone, Phys. Rev. Lett. 106, 093902 (2011).

    Article  ADS  Google Scholar 

  19. P. Ambichl, K. G. Makris, L. Ge, Y. Chong, A. D. Stone, and S. Rotter, Phys. Rev. X 3, 041030 (2013).

    Google Scholar 

  20. N. M. Chtchelkatchev, A. A. Golubov, T. I. Baturina, and V. M. Vinokur, Phys. Rev. Lett. 109, 150405 (2012).

    Article  ADS  Google Scholar 

  21. A. J. Bray and M. A. Moore, Phys. Rev. Lett. 49, 1545 (1982).

    Article  ADS  Google Scholar 

  22. A. A. Gorbatsevich, M. N. Zhuravlev, and V. V. Kapaev, J. Exp. Theor. Phys. 107, 288 (2008).

    Article  ADS  Google Scholar 

  23. Y. V. Kopaev and S. N. Molotkov, JETP Lett. 59, 800 (1994).

    ADS  Google Scholar 

  24. C. Caroli, R. Combescot, P. Nozieres, and D. Saint-James, J. Phys. C: Solid State Phys. 4, 916 (1971).

    Article  ADS  Google Scholar 

  25. C. Caroli, R. Combescot, P. Nozieres, and D. Saint-James, J. Phys. C: Solid State Phys. 5, 21 (1972).

    Article  ADS  Google Scholar 

  26. G. L. Celardo and L. Kaplan, Phys. Rev. B 79, 155108 (2009).

    Article  ADS  Google Scholar 

  27. H. Feshbach, Ann. Phys. 5, 357 (1958).

    Article  ADS  MathSciNet  Google Scholar 

  28. H. Feshbach, Ann. Phys. 19, 287 (1962).

    Article  ADS  MathSciNet  Google Scholar 

  29. S. Garmon, M. Gianfreda, and N. Hatano, Phys. Rev. A 92, 022125 (2015).

    Article  ADS  MathSciNet  Google Scholar 

  30. F.-M. Dittes, Phys. Rep. 4, 215 (2000).

    Article  ADS  MathSciNet  Google Scholar 

  31. A. J. Fox and F. A. Johnson, Comp. J. 9, 98 (1966).

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Gorbatsevich.

Additional information

Published in Russian in Pis’ma v Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2016, Vol. 103, No. 12, pp. 866–871.

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gorbatsevich, A.A., Shubin, N.M. PT-symmetry breaking in resonant tunneling heterostructures. Jetp Lett. 103, 769–773 (2016). https://doi.org/10.1134/S0021364016120031

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364016120031

Navigation