Skip to main content
Log in

Breakdown of the Fermi arcs in underdoped cuprates by incommensurate charge density waves

  • Condensed Matter
  • Published:
JETP Letters Aims and scope Submit manuscript

An Erratum to this article was published on 01 January 2015

Abstract

Interactions between the coherent excitations on disconnected arcs along a “bare” Fermi surface (the socalled Fermi arcs FAs) seen by angle-resolved photo emission spectroscopy (ARPES) in several underdoped (UD) cuprates and incommensurate charge density wave (IC CDW) ordering at lowering of the temperature have been studied. The carriers on FAs scatter strongly on the short-wavelength potential of CDW. The large momentum transfer relates FAs with the electronic states lying deeply under the chemical potential thus involving into consideration the Fermi liquid interactions. At low temperatures IC CDW may fully destroy low lying excitations on the Fermi arcs, leaving electrons on the pocket at the Γ point as the only charged elementary excitations in the CDW phase in UD cuprates. The results infer competition between superconducting and CDW order parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Damascelli, Z. Hussain, and Z.-X. Shen, Rev. Mod. Phys. 75, 473 (2003).

    Article  ADS  Google Scholar 

  2. N. Doiron-Leyraud, C. Proust, D. LeBoeuf, J. Levallois, J.-B. Bonnemaison, R. Liang, D. A. Bonn, W. N. Hardy, and L. Taillefer, Nature 447, 565 (2007).

    Article  ADS  Google Scholar 

  3. N. Barišić, M. K. Chan, Y. Li, G. Yu, X. Zhao, M. Dressel, A. Smontara, and M. Greven, www.pnas.org/cgi/doi/10.1073/pnas.1301989110.

  4. L. P. Gor’kov, Phys. Rev. (Rapid Commun.) B 88, 041104 (2013).

    Article  ADS  Google Scholar 

  5. D. LeBoeuf, N. Doiron-Leyraud, B. Vignolle, M. Sutherland, B. J. Ramshaw, J. Levallois, R. Daou, F. Laliberte, O. Cyr-Choiniere, J. Chang, Y. J. Jo, L. Balicas, R. Liang, D. A. Bonn, W. N. Hardy, C. Proust, and L. Taillefer, Phys. Rev. B 83, 054506 (2011).

    Article  ADS  Google Scholar 

  6. N. Doiron-Leyraud, S. Lepault, O. Cyr-Choiniere, B. Vignolle, G. Grissonnanche, F. Laliberte, J. Chang, N. Barisic, M. K. Chan, L. Ji, X. Zhao, Y. Li, M. Greven, C. Proust, and L. Taillefer, Phys. Rev. X 3, 021019 (2013).

    Google Scholar 

  7. J. Chang, E. Blackburn, A. T. Holmes, N. B. Christensen, J. Larsen, J. Mesot, R. Liang, D. A. Bonn, W. N. Hardy, A. Watenphul, M. v. Zimmermann, E. M. Forgan, and S. M. Hayden, Nature Phys. 8, 871 (2012).

    Article  ADS  Google Scholar 

  8. G. Ghiringhelli, M. Le Tacon, M. Minola, S. BlancoCanosa, C. Mazzoli, N. B. Brookes, G. M. De Luca, A. Frano, D. G. Hawthorn, F. He, T. Loew, M. Moretti Sala, D. C. Peets, M. Salluzzo, E. Schierle, R. Sutarto, G. A. Sawatzky, E. Weschke, B. Keimer, and L. Braicovich, Science 337, 821 (2012).

    Article  ADS  Google Scholar 

  9. T. Wu, H. Mayaffre, S. Kramer, M. Horvatic, C. Berthier, W. N. Hardy, R. Liang, D. A. Bonn, and M.-H. Julien, Nature 477, 191 (2011).

    Article  ADS  Google Scholar 

  10. E. Blackburn, J. Chang, M. Hucker, A. T. Holmes, N. B. Christensen, R. Liang, D. A. Bonn, W. N. Hardy, U. Rütt, O. Gutowski, M. v. Zimmermann, E. M. Forgan, and S. M. Hayden, Phys. Rev. Lett. 110, 137004 (2013).

    Article  ADS  Google Scholar 

  11. E. Blackburn, J. Chang, A. H. Said, B. M. Leu, R. Liang, D. A. Bonn, W. N. Hardy, E. M. Forgan, and S. M. Hayden, Phys. Rev. B 88, 054506 (2013).

    Article  ADS  Google Scholar 

  12. T. P. Croft, C. Lester, M. S. Senn, A. Bombardi, and S. M. Hayden, Phys. Rev. B 89, 224513 (2014).

    Article  ADS  Google Scholar 

  13. R.-H. He, K. Tanaka, S.-K. Mo, T. Sasagawa, M. Fujita, T. Adachi, N. Mannella, K. Yamada, Y. Koike, Z. Hussain, and Z.-X. Shen, Nature Phys. 5, 119 (2009).

    Article  ADS  Google Scholar 

  14. L. P. Gor’kov and G. B. Teitel’baum, arXiv:1407.5888.

  15. L. Taillefer, J. Phys.: Condens. Matter 21, 164212 (2009).

    ADS  Google Scholar 

  16. W. Tabis, Y. Li, M. Le Tacon, L. Braicovich, A. Kreyssig, M. Minola, G. Dellea, E. Weschke, M. J. Veit, M. Ramazanoglu, A. I. Goldman, T. Schmitt, G. Ghiringhelli, N. Barisic, M. K. Chan, C. J. Dorow, G. Yu, X. Zhao, B. Keimer, and M. Greven, arXiv:1404.7658.

  17. N. Harrison and S. E. Sebastian, arXiv:1401.6590v1.

  18. S. C. Riggs, O. Vafek, J. B. Kemper, J. B. Betts, A. Migliori, F. F. Balakirev, W. N. Hardy, R. Liang, D. A. Bonn, and G. S. Boebinger, Nature Phys. 7, 332 (2011).

    Article  ADS  Google Scholar 

  19. L. P. Gor’kov, Phys. Rev. B 86, 060501 (2012).

    Article  ADS  Google Scholar 

  20. T. Yoshida, M. Hashimoto, I. M. Vishik, Z.-X. Shen, and A. Fujimori, J. Phys. Soc. Jpn. 81, 011006 (2012).

    Article  ADS  Google Scholar 

  21. T. Yoshida, X. J. Zhou, K. Tanaka, W. L. Yang, Z. Hussain, Z.-X. Shen, A. Fujimori, S. Komiya, Y. Ando, H. Eisaki, T. Kakeshita, and S. Uchida, Phys. Rev. B 74, 224510 (2006).

    Article  ADS  Google Scholar 

  22. W. L. McMillan, Phys. Rev. B 16, 643 (1977).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. P. Gor’kov.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gor’kov, L.P. Breakdown of the Fermi arcs in underdoped cuprates by incommensurate charge density waves. Jetp Lett. 100, 403–406 (2014). https://doi.org/10.1134/S0021364014180040

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364014180040

Keywords

Navigation