Skip to main content
Log in

Correlation properties of FeAs-based superconductors: Quantum trajectory Monte Carlo method

  • Condensed Matter
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

Pair correlation functions for two-dimensional FeAs clusters simulating iron-based superconductors have been calculated with the generalized quantum Monte Carlo algorithm within the full two-orbital model. The data obtained for clusters with dimensions up to 10 × 10 FeAs cells indicate the possibility of the effective attraction of charge carriers, which corresponds to symmetry A 1g , at certain interaction parameters. The dependences of pair correlations on the dimension of a cluster, temperature, interaction magnitude, and type of symmetry of the order parameter have been analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Y. Kamihara, T. Watanabe, M. Hirano, and H. Hosono, J. Am. Chem. Soc. 130, 3296 (2008).

    Article  Google Scholar 

  2. Yu. Isyumov and E. Kurmaev, High-Tc Superconductors Based on FeAs Compounds (Springer, Berlin, 2010).

    Book  Google Scholar 

  3. E. Dagotto, Rev. Mod. Phys. 85, 849 (2013).

    Article  ADS  Google Scholar 

  4. V. J. Emery, Phys. Rev. Lett. 58, 2794 (1987).

    Article  ADS  Google Scholar 

  5. S. Raghu, X.-L. Qi, Ch.-X. Liu, D. J. Scalapino, and S.-C. Zhang, Phys. Rev. B 77, 220503(R) (2008).

    Article  ADS  Google Scholar 

  6. A. Moreo, M. Daghofer, J. A. Riera, and E. Dagotto, Phys. Rev. B 79, 134502 (2009).

    Article  ADS  Google Scholar 

  7. M. Daghofer, A. Nicholson, A. Moreo, and E. Dagotto, Phys. Rev. B 81, 014511 (2010).

    Article  ADS  Google Scholar 

  8. S.-L. Yu, J. Knang, and J.-X. Li, Phys. Rev. B 79, 064517 (2009).

    Article  ADS  Google Scholar 

  9. Q. Luo, G. Martins, D.-X. Yao, M. Daghofer, R. Yu, A. Moreo, and E. Dagatto, Phys. Rev. B 82, 104508 (2010).

    Article  ADS  Google Scholar 

  10. S. Graser, T. A. Maier, P. J. Hirschfeld, and D. J. Scalapino, New J. Phys. 11, 025016 (2009).

    Article  ADS  Google Scholar 

  11. M. V. Sadovskii, Phys. Usp. 51, 1243 (2008).

    Article  Google Scholar 

  12. K. Ishida, Y. Nakai, and H. Hosono, J. Phys. Soc. Jpn. 78, 062001 (2009).

    Article  ADS  Google Scholar 

  13. M. V. Sadovskii, E. Z. Kuchinskii, and I. A. Nekrasov, J. Magn. Magn. Mater. 324, 3481 (2012).

    Article  ADS  Google Scholar 

  14. M. V. Medvedev, I. A. Nekrasov, and M. V. Sadovskii, JETP Lett. 95, 33 (2012).

    Article  ADS  Google Scholar 

  15. N. V. Prokof’ev, B. V. Svistunov, and I. S. Tupitsyn, J. Exp. Theor. Phys. 87, 310 (1998).

    Article  ADS  Google Scholar 

  16. V. A. Kashurnikov and A. V. Krasavin, J. Exp. Theor. Phys. 111, 180 (2010).

    Article  ADS  Google Scholar 

  17. V. A. Kashurnikov and A. V. Krasavin, JETP Lett. 97, 333 (2013).

    Article  ADS  Google Scholar 

  18. K. Haule, J. H. Shim, and G. Kotliar, Phys. Rev. Lett. 100, 226402 (2008).

    Article  ADS  Google Scholar 

  19. A. Nicholson, W. Ge, X. Zhang, J. Riera, M. Daghofer, A. M. Oles, G. B. Martins, A. Moreo, and E. Dagotto, Phys. Rev. Lett. 106, 217002 (2011).

    Article  ADS  Google Scholar 

  20. M. Okumura, N. Nakai, H. Nakamura, N. Hayashi, S. Yamada, and M. Machida, Physica C 469, 932 (2009).

    Article  ADS  Google Scholar 

  21. Y. Wan and Q.-H. Wang, arXiv:0806.0923.

  22. K. Kubo and P. Thalmeier, J. Phys. Soc. Jpn. 80, SA121 (2011).

    Article  Google Scholar 

  23. T. Ma, H.-Q. Lin, and J. Hu, Phys. Rev. Lett. 110, 107002 (2013).

    Article  ADS  Google Scholar 

  24. Y. Wu, G. Liu, and T. Ma, Europhys. Lett. 104, 27013 (2013).

    Article  ADS  Google Scholar 

  25. S. Liang, G. Alvarez, C. Sen, A. Moreo, and E. Dagotto, Phys. Rev. Lett. 109, 047001 (2012).

    Article  ADS  Google Scholar 

  26. S. Liang, A. Moreo, and E. Dagotto, Phys. Rev. Lett. 111, 047004 (2013).

    Article  ADS  Google Scholar 

  27. R. Applegate, R. P. Singh, C. C. Chen, and T. P. Devereaux, Phys. Rev. B 85, 054411 (2012).

    Article  ADS  Google Scholar 

  28. D. J. Singh and M.-H. Du, Phys. Rev. Lett. 100, 273003 (2008).

    Google Scholar 

  29. A. Abrikosov, L. Gorkov, and I. Dzyaloshinskii, Methods of Quantum Field Theory in Statistical Physics (Dobrosvet, Moscow, 1998; Prentice-Hall, Englewood Cliffs, NJ, 1963).

    Google Scholar 

  30. N. Furukawa and M. J. Imada, Proc. Soc. Jpn. 60, 810 (1991).

    Article  MathSciNet  ADS  Google Scholar 

  31. M. Daghofer, A. Moreo, J. A. Riera, E. Arrigoni, D. J. Scalapino, and E. Dagotto, Phys. Rev. Lett. 101, 237004 (2008).

    Article  ADS  Google Scholar 

  32. E. Berg, S. A. Kivelson, and D. J. Scalapino, Phys. Rev. B 81, 172504 (2010).

    Article  ADS  Google Scholar 

  33. Y. Ran, F. Wang, H. Zhau, A. Vishwanath, and D.-H. Lee, Phys. Rev. B 79, 014505 (2009).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Krasavin.

Additional information

Original Russian Text © V.A. Kashurnikov, A.V. Krasavin, 2014, published in Pis’ma v Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2014, Vol. 100, No. 1, pp. 18–25.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kashurnikov, V.A., Krasavin, A.V. Correlation properties of FeAs-based superconductors: Quantum trajectory Monte Carlo method. Jetp Lett. 100, 16–23 (2014). https://doi.org/10.1134/S0021364014130074

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364014130074

Keywords

Navigation