Skip to main content
Log in

Liquid methane at extreme temperature and pressure: Implications for models of Uranus and Neptune

  • Astrophysics and Cosmology
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

We present large scale electronic structure based molecular dynamics simulations of liquid methane at planetary conditions. In particular, we address the controversy of whether or not the interior of Uranus and Neptune consists of diamond. In our simulations we find no evidence for the formation of diamond, but rather sp 2-bonded polymeric carbon. Furthermore, we predict that at high temperature hydrogen may exist in its monoatomic and metallic state. The implications of our finding for the planetary models of Uranus and Neptune are in detail discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. M. Podolak, A. Weizman, and M. Marley, Planet. Space Sci. 43, 1517 (1995).

    Article  ADS  Google Scholar 

  2. W. B. Hubbard, Science 214, 145 (1981).

    Article  ADS  Google Scholar 

  3. M. Podolak, J. I. Podolak, and M. Marley, Planet. Space Sci. 48, 143 (2000).

    Article  ADS  Google Scholar 

  4. W. J. Nellis, D. C. Hamilton, N. C. Holmes, et al., Science 240, 779 (1988).

    Article  ADS  Google Scholar 

  5. W. B. Hubbard, W. J. Nellis, A. C. Mitchell, et al., Science 253, 648 (1991).

    Article  ADS  Google Scholar 

  6. R. Helled, J. D. Anderson, M. Podolak, and G. Schubert, Astrophys. J. 726, 15 (2011).

    Article  ADS  Google Scholar 

  7. W. J. Nellis, F. H. Ree, M. van Thiel, and A. C. Mitchell, J. Chem. Phys. 75, 3055 (1981).

    Article  ADS  Google Scholar 

  8. W. J. Nellis, D. C. Hamilton, and A. C. Mitchell, J. Chem. Phys. 115, 1015 (2001).

    Article  ADS  Google Scholar 

  9. L. R. Benedetti, J. H. Nguyen, W. A. Caldwell, et al., Science 286, 100 (1999).

    Article  ADS  Google Scholar 

  10. F. H. Ree, J. Chem. Phys. 70, 974 (1979).

    Article  ADS  Google Scholar 

  11. M. Ross, Nature 292, 435 (1981).

    Article  ADS  Google Scholar 

  12. F. Ancilotto, G. L. Chiarotti, S. Scandolo, and E. Tosatti, Science 275, 1288 (1997).

    Article  ADS  Google Scholar 

  13. J. D. Kress, S. Goedecker, A. Hoisie, et al., J. Comput. Aided Mater. Design 5, 295 (1998).

    Article  ADS  Google Scholar 

  14. J. D. Kress, S. R. Bickham, L. A. Collins, et al., Phys. Rev. Lett. 83, 3896 (1999).

    Article  ADS  Google Scholar 

  15. L. Spanu, D. Donadio, D. Hohl, et al., Proc. Natl. Acad. Sci. USA 108, 6843 (2011).

    Article  ADS  Google Scholar 

  16. F. R. Krajewski and M. Parrinello, Phys. Rev. B 71, 233105 (2005).

    Article  ADS  Google Scholar 

  17. M. Ceriotti, T. D. Kühne, and M. Parrinello, J. Chem. Phys. 129, 024707 (2008); AIP Conf. Proc. 1148, 658 (2009); D. Richters, M. Ceriotti, and T. D. Kühne (in press).

    Article  ADS  Google Scholar 

  18. O. H. Nielsen and R. M. Martin, Phys. Rev. Lett. 50, 697 (1983).

    Article  ADS  Google Scholar 

  19. A. P. Horsfield, P. D. Godwin, D. G. Pettifor, and A. P. Sutton, Phys. Rev. B 54, 15773 (1996).

    Article  ADS  Google Scholar 

  20. https://cmsportal.caspur.it/index.php/CMPTool.

  21. T. D. Kühne, M. Krack, F. R. Mohamed, and M. Parrinello, Phys. Rev. Lett. 98, 066401 (2007); T. D. Kühne, M. Krack, and M. Parrinello, J. Chem. Theory Comput. 5, 235 (2009); T. D. Kühne, T. A. Pascal, E. Kaxiras, and Y. Jung, J. Phys. Chem. Lett. 2, 105 (2011); T. D. Kühne and R. Z. Khaliullin, Nature Commun. 4, 1450 (2013).

    Article  ADS  Google Scholar 

  22. P. L. Silvestrelli, A. Alavi, M. Parrinello, and D. Frenkel, Phys. Rev. Lett. 77, 3149 (1996); Phys. Rev. B 56, 3806 (1997).

    Article  ADS  Google Scholar 

  23. B. Conrath, F. M. Flasar, R. Hanel, et al., Science 246, 1454 (1989).

    Article  ADS  Google Scholar 

  24. I. Tamblyn and S. A. Bonev, Phys. Rev. Lett. 104, 065702 (2010).

    Article  ADS  Google Scholar 

  25. M. A. Morales, C. Pierleoni, E. Schwegler, and D. M. Ceperley, Proc. Natl. Acad. Sci. USA 107, 12799 (2010).

    Article  ADS  Google Scholar 

  26. S. Scandolo, Proc. Natl. Acad. Sci. USA 100, 3051 (2003).

    Article  ADS  Google Scholar 

  27. S. Azadi and T. D. Kühne, JETP Lett. 95, 449 (2012).

    Article  ADS  Google Scholar 

  28. N. F. Ness, M. H. Acuña, K. W. Behannon, et al., Science 233, 85 (1986); N. F. Ness, M. H. Acuñ, L. F. Burlaga, et al., Science 246, 1473 (1989).

    Article  ADS  Google Scholar 

  29. S. T. Weir, A. C. Mitchell, and W. J. Nellis, Phys. Rev. Lett. 76, 1860 (1996).

    Article  ADS  Google Scholar 

  30. W. J. Nellis, S. T. Weir, and A. C. Mitchell, Phys. Rev. B 59, 3434 (1999).

    Article  ADS  Google Scholar 

  31. J. W. Warwick, D. R. Evans, I. H. Romig, et al., Science 233, 102 (1986); J. W. Warwick, D. R. Evans, G. R. Peltzer, et al., Science 246, 1498 (1989).

    Article  ADS  Google Scholar 

  32. R. Z. Khaliullin, H. Eshet, T. D. Kühne, et al., Nature Mater. 10, 693 (2011); Phys. Rev. B 81, 100103(R) (2010).

    Article  ADS  Google Scholar 

  33. L. M. Ghiringhelli, C. Valeriani, J. H. Los, et al., Mol. Phys. 106, 2011 (2008).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Th. D. Kühne.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Richters, D., Kühne, T.D. Liquid methane at extreme temperature and pressure: Implications for models of Uranus and Neptune. Jetp Lett. 97, 184–187 (2013). https://doi.org/10.1134/S0021364013040127

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364013040127

Keywords

Navigation