Skip to main content
Log in

Rogue waves in the basin of intermediate depth and the possibility of their formation due to the modulational instability

  • Plasma, Hydro- and Gas Dynamics
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

The properties of rogue waves in the basin of intermediate depth are discussed in comparison with known properties of rogue waves in deep waters. Based on observations of rogue waves in the ocean of intermediate depth we demonstrate that the modulational instability can still play a significant role in their formation for basins of 20 m and larger depth. For basins of smaller depth, the influence of modulational instability is less probable. By using the rational solutions of the nonlinear Schrodinger equation (breathers), it is shown that the rogue wave packet becomes wider and contains more individual waves in intermediate rather than in deep waters, which is also confirmed by observations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Kharif and E. Pelinovsky, Eur. J. Mech. B: Fluid 22, 603 (2003).

    Article  MathSciNet  MATH  Google Scholar 

  2. K. Dysthe, E. Harald, and P. Muller, Ann. Rev. Fluid Mech. 40, 287 (2008).

    Article  ADS  Google Scholar 

  3. C. Kharif, E. Pelinovsky, and A. Slunyaev, Rogue Waves in the Ocean (Springer, Berlin, 2009).

    MATH  Google Scholar 

  4. Ch. Garrett and J. Gemmrich, Phys. Today 62, 62 (2009).

    Article  Google Scholar 

  5. I. Didenkulova and E. Pelinovsky, Nonlinearity 24, R1 (2011).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  6. A. Slunyaev, I. Didenkulova, and E. Pelinovsky, Contemp. Phys. 52, 571 (2011).

    Article  ADS  Google Scholar 

  7. N. Akhmediev and E. Pelinovsky, Eur. Phys. J.: Spec. Top. 185, 1 (2010).

    Article  Google Scholar 

  8. E. A. Kuznetsov, Sov. Phys. Dokl. 22, 507 (1977).

    ADS  Google Scholar 

  9. D. H. Peregrine, J. Aust. Math. Soc. Ser. B: Appl. Math. 25, 16 (1983).

    Article  MathSciNet  MATH  Google Scholar 

  10. N. Akhmediev and V. I. Korneev, Theor. Math. Phys. 69, 1089 (1986).

    Article  MathSciNet  MATH  Google Scholar 

  11. P. Dubard and V. B. Matveev, Nat. Hazards Earth Syst. Sci. 11, 667 (2011).

    Article  ADS  Google Scholar 

  12. A. Chabchoub, N. Hoffmann, M. Onorato, et al., Phys. Rev. X 2, 011015 (2012).

    Article  Google Scholar 

  13. A. Chabchoub, N. Hoffmann, and N. Akhmediev, Phys. Rev. Lett. 106, 204502 (2011).

    Article  ADS  Google Scholar 

  14. A. Chabchoub, N. Hoffmann, and N. Akhmediev, J. Geophys. Res.: Oceans 117, C00J02 (2012).

    Google Scholar 

  15. A. Chabchoub, S. Neumann, N. Hoffmann, et al., J. Geophys. Res.: Oceans 117, C00J03 (2012).

    Google Scholar 

  16. A. Toffoli, E. M. Bitner-Gregersen, A. R. Osborne, et al., Geophys. Res. Lett. 38, L06605 (2011).

    Google Scholar 

  17. M. Onorato, T. Waseda, A. Toffoli, et al., Phys. Rev. Lett. 102, L114502 (2009).

  18. G. F. Clauss, M. Klein, and M. Onorato, in Proceedings of the ASME Conference, ASME Conf. Proc. OMAE2011-49545 (2011), p. 417.

    Google Scholar 

  19. B. Kibler, J. Fatome, C. Finot, et al., Nat. Phys. 6, 790 (2010).

    Article  Google Scholar 

  20. H. Bailung, S. K. Sharma, and Y. Nakamura, Phys. Rev. Lett. 107, 255005 (2011).

    Article  ADS  Google Scholar 

  21. M. Onorato, A. R. Osborne, M. Serio, et al., Phys. Rev. Lett. 86, 5831 (2011).

    Article  ADS  Google Scholar 

  22. A. Slunyaev, E. Pelinovsky, and C. G. Soares, Appl. Ocean Res. 27, 12 (2005).

    Article  Google Scholar 

  23. L. Cavaleri, L. Bertotti, L. Torrisi, et al., J. Geophys. Res.: Oceans 117, C00J10 (2012).

    Google Scholar 

  24. I. I. Didenkulova, A. V. Slunyaev, E. N. Pelinovsky, and C. Kharif, Nat. Hazards Earth Syst. Sci. 6, 1007 (2006).

    Article  ADS  Google Scholar 

  25. P. C. Liu, Geofizika 24, 57 (2007).

    MATH  Google Scholar 

  26. I. Nikolkina and I. Didenkulova, Nat. Hazards Earth Syst. Sci. 11, 2913 (2011).

    Article  ADS  Google Scholar 

  27. I. Nikolkina and I. Didenkulova, Nat. Hazards 61, 989 (2012).

    Article  Google Scholar 

  28. B. Baschek and J. Imai, Oceanography 24, 158 (2011).

    Article  Google Scholar 

  29. A. Osborne, Nonlinear Ocean Waves and the Inverse Scattering Transform (Academic, New York, 2010).

    MATH  Google Scholar 

  30. I. V. Lavrenov, Nat. Hazards 17, 117 (1998).

    Article  Google Scholar 

  31. M. Ledden, G. Vaughn, J. Lansen, et al., Cont. Shelf Res. 29, 352 (2009).

    Article  ADS  Google Scholar 

  32. L. Cavaleri, L. Bertotti, L. Torrisi, et al., J. Geophys. Res.: Oceans 117, C00J10 (2012).

    Google Scholar 

  33. E. B. L. Mackay, C. H. Retzler, P. G. Challenor, et al., J. Geophys. Res.: Oceans 113, 989 (2008).

    Article  Google Scholar 

  34. J. N. Hunt, J. Waterw. Port. C. Div. 105, 457 (1979).

    Google Scholar 

  35. P. A. E. M. Janssen and M. Onorato, J. Phys. Oceanogr. 37, 2389 (2007).

    Article  ADS  Google Scholar 

  36. H. Zeng and K. Trulsen, Nat. Hazards Earth Syst. Sci. 12, 631 (2012).

    Article  ADS  Google Scholar 

  37. N. Akhmediev, A. Ankiewicz, and M. Taki, Phys. Lett. A 373, 675 (2009).

    Article  ADS  MATH  Google Scholar 

  38. T. A. A. Adcock, P. H. Taylor, S. Yan, et al., Proc. R. Soc. A: Math. Phys. Eng. Sci. 467, 3004 (2011).

    Article  ADS  Google Scholar 

  39. A. V. Slunyaev, J. Exp. Theor. Phys. 101, 926 (2005).

    Article  ADS  Google Scholar 

  40. H. Hasimoto and H. Ono, J. Phys. Soc. Jpn. 33, 805 (1972).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. I. Didenkulova.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Didenkulova, I.I., Nikolkina, I.F. & Pelinovsky, E.N. Rogue waves in the basin of intermediate depth and the possibility of their formation due to the modulational instability. Jetp Lett. 97, 194–198 (2013). https://doi.org/10.1134/S0021364013040024

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364013040024

Keywords

Navigation