Skip to main content
Log in

On the nonlinear Schrödinger equation for waves on a nonuniform current

  • Methods of Theoretical Physics
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

A nonlinear Schrödinger equation with variable coefficients for surface waves on a large-scale steady nonuniform current has been derived without the assumption of a relative smallness of the velocity of the current. This equation can describe with good accuracy the loss of modulation stability of a wave coming to a counter current, leading to the formation of so-called rogue waves. Some theoretical estimates are compared to the numerical simulation with the exact equations for a two-dimensional potential motion of an ideal fluid with a free boundary over a nonuniform bottom at a nonzero average horizontal velocity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. E. Zakharov, J. Appl. Mech. Tech. Phys. 9, 190 (1968).

    Article  ADS  Google Scholar 

  2. T. B. Benjamin and J. E. Feir, J. Fluid Mech. 27, 417 (1967).

    Article  ADS  MATH  Google Scholar 

  3. C. Kharif and E. Pelinovsky, Eur. J. Mech. B: Fluids 22, 603 (2003).

    Article  MathSciNet  MATH  Google Scholar 

  4. Rogue Waves, Ed. by E. Pelinovsky and C. Kharif, Eur. J. Mech. B: Fluids 25, 535 (2006).

    Google Scholar 

  5. Discussion and Debate: Rogue Waves-Towards a Unifying Concept? Ed. by N. Akhmediev and E. Pelinovsky, Eur. Phys. J. Spec. Top. 185, 1 (2010).

  6. Extreme and Rogue Waves, Special Issue of Natural Hazards and Earth System Sciences, Ed. by E. Pelinovsky and C. Kharif (2010): http://www.nat-hazards-earth-syst-sci.net/special-issue120.html.

  7. V. E. Zakharov, A. I. Dyachenko, and O. A. Vasilyev, Eur. J. Mech. B: Fluids 21, 283 (2002).

    Article  MathSciNet  MATH  Google Scholar 

  8. A. I. Dyachenko and V. E. Zakharov, JETP Lett. 81, 255 (2005).

    Article  ADS  Google Scholar 

  9. V. E. Zakharov, A. I. Dyachenko, and O. A. Prokofiev, Eur. J. Mech. B: Fluids 25, 677 (2006).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  10. N. Akhmediev, V. M. Eleonskii, and N. E. Kulagin, Sov. Phys. JETP 62, 894 (1985).

    Google Scholar 

  11. N. Akhmediev and V. Korneev, Theor. Math. Phys. 69, 1089 (1986).

    Article  MathSciNet  MATH  Google Scholar 

  12. N. N. Akhmediev, V. M. Eleonskii, and N. E. Kulagin, Theor. Math. Phys. 72, 809 (1987).

    Article  MathSciNet  MATH  Google Scholar 

  13. N. Akhmediev, A. Ankiewicz, and M. Taki, Phys. Lett. A 373, 675 (2009).

    Article  ADS  MATH  Google Scholar 

  14. M. Erkintalo, K. Hammani, B. Kibler, et al., Phys. Rev. Lett. 107, 253901 (2011).

    Article  ADS  Google Scholar 

  15. D. H. Peregrine, Adv. Appl. Mech. 16, 9 (1976).

    Article  MATH  Google Scholar 

  16. I. V. Lavrenov and A. V. Porubov, Eur. J. Mech. B: Fluids 25, 574 (2006).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  17. M. Onorato, A. R. Osborne, and M. Serio, Phys. Rev. Lett. 96, 014503 (2006).

    Article  ADS  Google Scholar 

  18. M. Onorato, T. Waseda, A. Toffoli, et al., Phys. Rev. Lett. 102, 114502 (2009).

    Article  ADS  Google Scholar 

  19. V. P. Ruban, Phys. Rev. E 74, 036305 (2006).

    Article  ADS  Google Scholar 

  20. V. P. Ruban, Phys. Rev. Lett. 99, 044502 (2007).

    Article  ADS  Google Scholar 

  21. V. P. Ruban, J. Exp. Theor. Phys. 110, 529 (2010).

    Article  Google Scholar 

  22. V. P. Ruban, JETP Lett. 94, 177 (2011).

    Article  ADS  Google Scholar 

  23. F. P. Bretherton and C. J. R. Garrett, Proc. R. Soc. London A 302, 529 (1968).

    Article  ADS  Google Scholar 

  24. F.-M. Turpin, C. Benmoussa, and C. C. Mei, J. Fluid Mech. 132, 1 (1983).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  25. M. Gerber, J. Fluid Mech. 176, 311 (1987).

    Article  ADS  MATH  Google Scholar 

  26. J. R. Stocker and D. H. Peregrine, J. Fluid Mech. 399, 335 (1999).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  27. K. B. Hjelmervik and K. Trulsen, J. Fluid Mech. 637, 267 (2009).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  28. M. Onorato, D. Proment, and A. Toffoli, Phys. Rev. Lett. 107, 184502 (2011).

    Article  ADS  Google Scholar 

  29. V. P. Ruban, Phys. Rev. E 70, 066302 (2004).

    Article  MathSciNet  ADS  Google Scholar 

  30. V. P. Ruban, Phys. Lett. A 340, 194 (2005).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  31. V. P. Ruban, Phys. Rev. E 77, 037302 (2008).

    Article  MathSciNet  ADS  Google Scholar 

  32. V. P. Ruban, J. Exp. Theor. Phys. 114, 343 (2012).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. P. Ruban.

Additional information

Original Russian Text © V.P. Ruban, 2012, published in Pis’ma v Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2012, Vol. 95, No. 9, pp. 550–556.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ruban, V.P. On the nonlinear Schrödinger equation for waves on a nonuniform current. Jetp Lett. 95, 486–491 (2012). https://doi.org/10.1134/S002136401209010X

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S002136401209010X

Keywords

Navigation