Skip to main content
Log in

Phase formation and dielectric properties of ceramics in the BiFeO3–BaTiO3–Bi(Mg0.5Ti0.5)O3 system

  • Published:
Inorganic Materials Aims and scope

Abstract

We have studied the effect of Bi(Mg0.5Ti0.5)O3 additions on the phase formation, structural parameters, microstructure, and dielectric properties of solid solutions in the region of a morphotropic phase boundary in the BiFeO3–BaTiO3 system. Single-phase samples with the perovskite structure have been obtained and the addition of Bi(Mg0.5Ti0.5)O3 has been shown to raise the Curie temperature of the ceramics and improve their dielectric properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cross, E., Materials science: lead-free at last, Nature, 2004, vol. 432, pp. 24–25.

    Article  CAS  Google Scholar 

  2. Saito, Y., Takao, H., Tani, T., Nonoyama, T., Takatori, K., Homma, T., Nagaya, T., and Nakamura, M., Leadfree piezoceramics, Nature, 2004, vol. 432, pp. 84–87.

    Article  CAS  Google Scholar 

  3. Maeder, M.D., Damjanovic, D., and Setter, N., Lead free piezoelectric materials, J. Electroceram., 2004, vol. 13, pp. 385–392.

    Article  CAS  Google Scholar 

  4. Takenaka, T., Nagata, H., Hiruma, Y., Yoshii, Y., and Matumoto, K., Lead-free piezoelectric ceramics based on perovskite structure, J. Electroceram., 2007, vol. 19, pp. 259–265.

    Article  CAS  Google Scholar 

  5. Zhang, S.J., Xia, R., and Shrout, T.R., Lead-free piezoelectric ceramics. Alternatives for PZT?, J. Electroceram., 2007, vol. 19, pp. 251–257.

    Article  Google Scholar 

  6. Takenaka, T., Nagata, H., and Hiruma, Y., Current developments and prospective of lead-free piezoelectric ceramics, Jpn. J. Appl. Phys., 2008, vol. 47, pp. 3787–3801.

    Article  CAS  Google Scholar 

  7. Rodel, J., Jo, W., Seifert, K., Anton, E.-M., Granzow, T., and Damjanovic, D., Perspective on the development of lead-free piezoceramics, J. Am. Ceram. Soc., 2009, vol. 92, pp. 1153–1177.

    Article  Google Scholar 

  8. Panda, P.K., Review: environmental friendly lead-free piezoelectric materials, J. Mater. Sci., 2009, vol. 44, pp. 5049–5062.

    Article  CAS  Google Scholar 

  9. Damjanovich, D., Klein, N., Li, J., and Porokhonskyy, V., What can be expected from lead-free piezoelectric materials?, Funct. Mater. Lett., 2010, vol. 3, pp. 5–13.

    Article  Google Scholar 

  10. Shvartsman, V.V. and Lupascu, D.C., Lead-free relaxor ferroelectrics, J. Am. Ceram. Soc., 2012, vol. 95, pp. 1–26.

    Article  CAS  Google Scholar 

  11. Coondoo, I., Panwar, N., and Kholkin, A., Lead-free piezoelectrics: current status and perspectives, J. Adv. Dielectr., 2013, vol. 3, paper 1 330 002.

    Google Scholar 

  12. Venevtsev, Yu.N., Politova, E.D., and Ivanov, S.A., Ferro- and Antiferroelectrics of Barium Titanium Oxide Family, Moscow: Chemistry, 1985.

    Google Scholar 

  13. Kumar, M.M., Srinivas, A., and Suryanarayana, S.V., Structure property relations in BiFeO3/BaTiO3 solid solutions, J. Appl. Phys., 2000, vol. 87, pp. 855–862.

    Article  CAS  Google Scholar 

  14. Horibe, Y., Nakayama, M., Hosokoshi, Y., Asaka, T., Matsui, Y., Asada, T., Koyama, Y., and Mori, S., Microstructures associated with dielectric and magnetic properties in (1–x )BiFeO3xBaTiO3, Jpn. J. Appl. Phys., Part 1, 2005, vol. 44, pp. 7148–7150.

    Article  CAS  Google Scholar 

  15. Itoh, N., Shimura, T., Sakamoto, W., and Yogo, T., Fabrication and characterization of BiFeO3–BaTiO3 ceramics by solid state reaction, Ferroelectrics, 2007, vol. 356, pp. 19–23.

    Article  CAS  Google Scholar 

  16. Kitagawa, S., Ozaki, T., Horibe, Y., Yoshii, K., and Mori, S., Ferroelectric domain structures in BiFeO3–BaTiO3, Ferroelectrics, 2008, vol. 376, pp. 122–128.

    Article  CAS  Google Scholar 

  17. Leontsev, S.O. and Eitel, R.E., Dielectric and piezoelectric properties in Mn-modified (1–x )BiFeO3 · xBaTiO3 ceramics, J. Am. Ceram. Soc., 2009, vol. 92, pp. 2957–2961.

    Article  CAS  Google Scholar 

  18. Guo, X.Z., Wu, Y.G., Zou, Y.N., and Wang, Z.Y., Effects of addition of BiFeO3 on phase transition and dielectric properties of BaTiO3 ceramic, J. Mater. Sci. Mater. Electron., 2012, vol. 23, pp. 1072–1076.

    Article  CAS  Google Scholar 

  19. Yang, H., Zhou, Ch., Liu, X., Zhou, Q., Chen, G., Wang, H., and Li, W., Structural, microstructural and electrical properties of BiFeO3–BaTiO3 ceramics with high thermal stability, Mater. Res. Bull., 2012, vol. 47, pp. 4243–4239.

    Google Scholar 

  20. Zhou, Ch., Feteira, A., and Shan, X., Effect of sintering temperature on the piezoelectric properties in BiFeO3–BaTiO3 ceramics, J. Korean Phys. Soc., 2012, vol. 61, pp. 947–950.

    Article  Google Scholar 

  21. Wei, Y.X., Wang, X.T., Zhu, J.T., Wang, X.L., and Jia, J.J., Dielectric, ferroelectric, and piezoelectric properties of BiFeO3–BaTiO3 ceramics, J. Am. Ceram. Soc., 2013, vol. 96, pp. 3163–3168.

    CAS  Google Scholar 

  22. Yang, H., Zhou, Ch., Liu, X., Zhou, Q., Chen, G., Li, W., and Wang, H., Piezoelectric properties and temperature stabilities of Mn- and Cu-modified BiFeO3–BaTiO3 high temperature ceramics, J. Eur. Ceram. Soc., 2013, vol. 33, pp. 1177–1183.

    Article  CAS  Google Scholar 

  23. Lee, M.H., Park, J.S., Kim, D.J., Kambale, R.C., Kim, M.-H., Song, T.K., Jung, H.J., Kim, S.W., Choi, H.I., Kim, W.-J., Kim, S.S., Jang, K.W., and Do, D.D., Ferroelectric and piezoelectric properties of BiFeO3–BaTiO3 solid solution ceramics, Ferroelectrics, 2013, vol. 452, pp. 7–12.

    Article  CAS  Google Scholar 

  24. Yao, Zh., Xu, Ch., Liu, H., Hao, H., Cao, M., Wang, Zh., Song, Z., Hu, W., and Ullah, A., Greatly reduced leakage current and defect mechanism in atmosphere sintered BiFeO3–BaTiO3 high temperature piezoceramics, J. Mater. Sci. Mater. Electron., 2014, vol. 25, pp. 4975–4982.

    Article  CAS  Google Scholar 

  25. Khalyavin, D.D., Salak, A.N., Vyshatko, N.P., Lopes, A.B., Olekhnovich, N.M., Pushkarev, A.V., Maroz, I.I., and Radyush, Y.V., Crystal structure of metastable perovskite Bi(Mg1/2Ti1/2)O3: Bi-based structural analogue of antiferroelectric PbZrO3, Chem. Mater., 2006, vol. 18, pp. 5104–5110.

    Article  CAS  Google Scholar 

  26. Zhou, Ch., Feteira, A., Shan, X., Yang, H., Zhou, Q., Cheng, J., Li, W., and Wang, H., Remarkably hightemperature stable piezoelectric properties of Bi(Mg1/2Ti1/2)O3)O3 modified BiFeO3–BaTiO3 ceramics, Appl. Phys. Lett., 2012, vol. 101, paper 032 901.

    Google Scholar 

  27. Yabuta, H., Shimada, M., Watanabe, T., Hayashi, J., Kubota, M., Miura, K., Fukui, T., Fujii, I., and Wada, S., Microstructure of BaTiO3–Bi(Mg1/2Ti1/2)O3)O3–BiFeO3 piezoelectric ceramics, Jpn. J. Appl. Phys., 2012, vol. 51, paper 09LD04.

    Google Scholar 

  28. Mitsui, R., Fujii, I., Nakashima, K., Kumada, N., Kuroiwa, Y., and Wada, S., Microstructure and piezoelectric properties of BaTiO3–Bi(Mg1/2Ti1/2)O3)O3–BiFeO3 ceramics, Key Eng. Mater., 2013, vol. 566, pp. 59–63.

    Article  Google Scholar 

  29. Mitsui, R., Fujii, I., Nakashima, K., Kumada, N., Kuroiwa, Y., and Wada, S., Enhancement in the piezoelectric properties of BaTiO3–Bi(Mg1/2Ti1/2)O3)O3–BiFeO3 system ceramics by nanodomain, Ceram. Int., 2013, vol. 39, pp. S695–S699.

    Article  CAS  Google Scholar 

  30. Shimamura, A., Fujii, I., Nakashima, K., Kuroiwa, Y., and Wada, S., Preparation of bismuth copper based perovskite-type ceramics and their piezoelectric properties, Key Eng. Mater., 2013, vol. 566, pp. 85–88.

    Article  Google Scholar 

  31. Fujii, I., Mitsui, R., Nakashima, K., and Wada, S., The enhanced piezoelectric properties of (Ba0.3Bi0.7)-(Mg0.05Fe0.6Ti0.35)O3 piezoelectric ceramics with high Curie temperature, J. Adv. Dielectr., 2014, vol. 4, paper 1450 005.

    Google Scholar 

  32. Lin, Y. and Yu, J., Ferroelectric and piezoelectric properties of high temperature perovskite-type 0.69Bi-FeO3–0.02Bi(Mg1/2Ti1/2)O3)O3–0.29BaTiO3 ceramics, J. Mater. Sci: Mater. Electron., 2014, vol. 25, pp. 5462–5466.

    CAS  Google Scholar 

  33. Mitsui, R., Fujii, I., Nakashima, K., Kumada, N., Kuroiwa, Y., and Wada, S., Chemical composition of dielectric and piezoelectric properties for BaTiO3–Bi(Mg1/2Ti1/2)O3)O3–BiFeO3 system ceramics, Key Eng. Mater., 2014, vol. 582, pp. 84–87.

    Article  Google Scholar 

  34. Politova, E.D., Akinfiev, V.S., Kaleva, G.M., Mosunov, A.V., Stefanovich, S.Yu., and Segalla, A.H., Effects of KCl additives on structure, phase transitions and dielectric properties of 0.36BiScO3–0.64PbTiO3 ceramics, Ferroelectrics, 2014, vol. 464, pp. 399–405.

    Article  Google Scholar 

  35. Min, K., Huang, F., Jin, Y., Zhu, W., and Zhu, J., Oxygen-vacancy-related dielectric relaxation in BiFeO3 ceramics, Ferroelectrics, 2013, vol. 450, pp. 42–48.

    Article  CAS  Google Scholar 

  36. Zhonghua, D. and Yukikuni, A., Ferroelectric properties in Mn-modified BiFeO3–BaTiO3 ceramics, Funct. Mater. Lett., 2014, vol. 7, paper 1 350 074.

    Google Scholar 

  37. Chen, J. and Cheng, J., Enhanced thermal stability of lead-free high temperature 0.75BiFeO3–0.25BaTiO3 ceramics with excess Bi content, J. Alloys Compd., 2014, vol. 589, pp. 115–119.

    Article  CAS  Google Scholar 

  38. Hyeong, J.L. and Shujun, Z.H., Perovskite lead-free piezoelectric ceramics, Lead-Free Piezoelectrics, Priya, S. and Nahm, S. Eds., New York: Springer, 2012, pp. 291–309.

  39. Segalla, A.G., Nersesov, S.S., Kaleva, G.M., and Politova, E.D., Ways of improving functional parameters of high-temperature ferroelectric/piezoelectric ceramics based on BiScO3–PbTiO3 solid solutions, Inorg. Mater., 2014, vol. 50, vol. 6, pp. 606–611.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. D. Politova.

Additional information

Original Russian Text © N.V. Golubko, G.M. Kaleva, A.V. Mosunov, N.V. Sadovskaya, E.D. Politova, 2016, published in Neorganicheskie Materialy, 2016, Vol. 52, No. 9, pp. 991–996.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Golubko, N.V., Kaleva, G.M., Mosunov, A.V. et al. Phase formation and dielectric properties of ceramics in the BiFeO3–BaTiO3–Bi(Mg0.5Ti0.5)O3 system. Inorg Mater 52, 925–931 (2016). https://doi.org/10.1134/S0020168516090065

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168516090065

Keywords

Navigation