Skip to main content
Log in

Numerical investigation of heat transfer enhancement in a square ventilated cavity with discrete heat sources using nanofluid

  • Heat and Mass Transfer and Physical Gasdynamics
  • Published:
High Temperature Aims and scope

Abstract

A numerical study of a laminar mixed convection problem in a ventilated square cavity partially heated from bellow is carried out. The fluid in the cavity is a water-based nanofluid containing Cu nanoparticles. The effects of monitoring parameters, namely, Richardson number, Reynolds number, and solid volume fraction on the streamline and isotherm contours as well as average Nusselt number along the two heat sources are analyzed. The computation is performed for Richardson number ranging from 0.1 to 10, Reynolds number from 10 to 500, and the solid volume fraction from 0 to 0.1. The results show that by adding nanoparticles to the base fluid and increasing both Reynolds and Richardson numbers the heat transfer rate is enhanced. It is also found, regardless of the Richardson and Reynolds numbers, and the volume fraction of nanoparticles, the highest heat transfer enhancement occurs at the left heat source surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Choi, S.U.S., ASME Fluids Eng. Div. Summer Conf., Proc., 1995, vol. 231, p. 99.

    Google Scholar 

  2. Eastman, J.A., Choi, S.U.S., Li, S., Yu, W., and Thompson, L.J., Appl. Phys. Lett., 2001, vol. 78, no. 6, p. 718.

    Article  ADS  Google Scholar 

  3. Eastman, J.A., Choi, S.U.S., Li, S., Thompson, L.J., and Lee, S., Mater. Res. Soc. Symp. Proc., 1997, vol. 457, p. 9.

    Google Scholar 

  4. Roy, G., Nguyen, C.T., and Lajoie, P.R., Superlattices Microstruct., 2004, vol. 35, no. 3, p. 497.

    Article  ADS  Google Scholar 

  5. Wang, X., Xu, X., and Choi, S.U.S., J. Thermophys. Heat Transfer, 1999, vol. 13, no. 4, p. 474.

    Article  Google Scholar 

  6. Eastman, J.A., Choi, S.U.S., Li, S., Soyez, G., Thompson, L.J., and DiMelfi, R.J., J. Metastable Nanocryst. Mater., 1999, vol. 2, no. 6, p. 629.

    Article  Google Scholar 

  7. Lee, S., Choi, S.U.S., Li, S., and Eastman, J.A., J. Heat Transfer, 1999, vol. 121, no. 2, p. 280.

    Article  Google Scholar 

  8. Xuan, Y. and Roetzel, W., Int. J. Heat Mass Transfer, 2000, vol. 43, no. 19, p. 3701.

    Article  Google Scholar 

  9. Xuan, Y. and Li, Q., Int. J. Heat Fluid Flow, 2000, vol. 21, no. 1, p. 58.

    Article  Google Scholar 

  10. Jahanshahi, M., Hosseinizadeh, S.F., Alipanah, M., Dehghani, A., and Vakilinejad, G.R., Int. Commun. Heat Mass Transfer, 2010, vol. 37, no. 6, p. 6874.

    Article  Google Scholar 

  11. Pak, B.C. and Cho, Y.I., Exp. Heat Transfer, 1998, vol. 11, no. 2, p. 151.

    Article  ADS  Google Scholar 

  12. Masuda, H., Ebata, A., Teramae, K., and Hishinuma, N., Netsu Bussei, 1993, vol. 4, no. 4, p. 227.

    Article  Google Scholar 

  13. Khanafer, K. and Lighstone, K., Int. J. Heat Mass Transfer, 2003, vol. 46, no. 19, p. 3639.

    Article  Google Scholar 

  14. Ho, C.J., Chen, M.W., and Li, Z.W., Int. J. Heat Mass Transfer, 2008, vol. 51, p. 4506.

    Article  Google Scholar 

  15. Abu-Nada, E., Masoud, Z., Oztopd, H., and Campo, A., Int. J. Therm. Sci., 2010, vol. 49, p. 479.

    Article  Google Scholar 

  16. Muthtamilselvan, M., Kandaswamy, P., and Lee, J., Commun. Nonlinear Sci. Numer. Simul., 2010, vol. 15, p. 1501.

    Article  ADS  MathSciNet  Google Scholar 

  17. Abu-Nada, E. and Chamkha, A.J., Eur. J. Mech., B: Fluids, 2010, vol. 29, no. 6, p. 472.

    Article  ADS  Google Scholar 

  18. Talebi, F., Mahmoodi, A.H., and Shahi, M., Int. Commun. Heat Mass Transfer, 2010, vol. 37, no. 1, p. 79.

    Article  Google Scholar 

  19. Sebdani, S.M., Mahmoodi, M., and Hashemi, S.M., Int. J. Therm. Sci., 2012, vol. 52, p. 112.

    Article  Google Scholar 

  20. Tiwari, R.K. and Das, M.K., Int. J. Heat Mass Transfer, 2007, vol. 50, nos. 9–10, p. 2002.

    Article  Google Scholar 

  21. Nguyen, C.T., Desgranges, F., Roy, G., Galanis, N., Mare, T., Boucher, S., and Minsta, H.A., Int. J. Heat Fluid Flow, 2007, vol. 28, no. 6, p. 1492.

    Article  Google Scholar 

  22. Minsta, H.A., Roy, G., Nguyen, C.T., and Doucet, D., Int. J. Therm. Sci., 2009, vol. 48, no. 2, p. 363.

    Article  Google Scholar 

  23. Sourtiji, E., Hosseinizadeh, S.F., Gorji-Bandpy, M., and Ganji, D.D., Int. Commun. Heat Mass Transfer, 2011, vol. 38, no. 8, p. 1125.

    Article  Google Scholar 

  24. Mahmoudi, A.H., Shahi, M., and Talebi, F., Int. Commun. Heat Mass Transfer, 2010, vol. 37, no. 8, p. 1158.

    Article  Google Scholar 

  25. Shahi, M., Mahmoudi, A.H., and Talebi, F., Int. Commun. Heat Mass Transfer, 2010, vol. 37, no. 2, p. 201.

    Article  Google Scholar 

  26. Khorasanizadeh, H., Amani, J., Nikfar, M., and Hemmat, M., J. Nanostruct., 2013, vol. 2, no. 4, p. 509.

    Google Scholar 

  27. Incropera, F.P., J. Heat Transfer, 1988, vol. 110, no.4.

    Google Scholar 

  28. Maxwell, J.C., A Treatise on Electricity and Magnetism, Oxford: Clarendon, 1873.

    MATH  Google Scholar 

  29. Brinkman, H.C., J. Chem. Phys., 1952, vol. 20, no. 4, p. 571.

    Article  ADS  Google Scholar 

  30. Abu-Nada, E., Masoud, Z., and Hijazi, A., Int. Commun. Heat Mass Transfer, 2008, vol. 35, no. 5, p. 657.

    Article  Google Scholar 

  31. Saravanan, S. and Sivaraj, C., Int. J. Heat Mass Transfer, 2011, vol. 54, no. 13, p. 2820.

    Article  Google Scholar 

  32. Hayase, T., Humphrey, J.A.C., and Greif, R., J. Comput. Phys.Commun., 1992, vol. 98, no. 1, p. 108.

    ADS  Google Scholar 

  33. Brown, D.L., Cortez, R., and Minion, M.L., J. Comput. Phys., 2001, vol. 168, p. 464.

    Article  ADS  MathSciNet  Google Scholar 

  34. Achdou, Y. and Guermond, J.L., SIAM J. Numer. Anal., 2000, vol. 37, p. 799.

    Article  MathSciNet  Google Scholar 

  35. Chorin, A.J., Math. Comput., 1969, vol. 23, p. 341.

    Article  Google Scholar 

  36. Chorin, A.J., Math. Comput., 1968, vol. 22, p. 745.

    Article  Google Scholar 

  37. Barrett, R., Berry, M., and Chan, T.F., Building Blocks for Iterative Methods, Philadelphia, PA: SIAM, 1994.

    Google Scholar 

  38. de Vahl, D., Int. J. Numer. Methods Fluids, 1983, vol. 3, no. 3, p. 249.

    Article  Google Scholar 

  39. Kuznik, F., Vareilles, J., Rusaouen, G., and Krauss, G., Int. J. Heat Fluid Flow, 2007, vol. 28, no. 5, p. 862.

    Article  Google Scholar 

  40. Dixit, H.N. and Babu, V., Int. J. Heat Mass Transfer, 2006, vol. 49, nos. 3–4, p. 727.

    Article  Google Scholar 

  41. Mansour, M.A., Mohamed, R.A., Abd-Elaziz, M.M., and Sameh, E., Int. Commun. Heat Mass Transfer, 2010, vol. 37, no. 10, p. 1504.

    Article  Google Scholar 

  42. Aminossadati, S.M. and Ghasemi, B., Eur. J. Mech., B: Fluids, 2009, vol. 28, no. 5, p. 630.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Moumni.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moumni, H., Welhezi, H. & Sediki, E. Numerical investigation of heat transfer enhancement in a square ventilated cavity with discrete heat sources using nanofluid. High Temp 55, 426–433 (2017). https://doi.org/10.1134/S0018151X17030166

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0018151X17030166

Navigation