Skip to main content
Log in

Improvement of piston engine operation efficiency by direct conversion of the heat of exhaust gases into electric energy

  • Heat and Mass Transfer and Physical Gasdynamics
  • Published:
High Temperature Aims and scope

Abstract

A promising new way of direct conversion of the heat of piston engine exhaust gases into electric energy is investigated. An original design of a thermoelectric converter with various surface reliefs (smooth, spherical peaks, spherical dimples) is developed. The engine operation and the flow in the heat-exchanger of the thermoelectric generator are modeled. Based on the results of 3D modeling of convective heat transfer, it has been determined that the surface with heat transfer intensifiers in the form of spherical dimples is the most efficient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kavtaradze, R.Z., Teoriya porshnevykh dvigatelei. Spetsial’nye glavy (The Theory of Piston Engines. Special Chapters), Moscow: Mosk. Gos. Tech. Univ. im. Baumana, 2008.

    Google Scholar 

  2. Koval’skii, R.V., Inzhenernye metody rascheta termoelektricheskikh generatorov (Engineering Methods of Calculation of Thermoelectric Generators), Moscow: Nauka, 1990.

    Google Scholar 

  3. Varlamov, S.A., Izv. Ross. Akad. Nauk, 2011, no. 3, p. 90.

    Google Scholar 

  4. Kavtaradze, R.Z. and Sergeev, S.S., High Temp., 2014, vol. 52, no. 2, p. 282.

    Article  Google Scholar 

  5. Kavtaradze, R.Z., Onishchenko, D.O., Zelentsov, A.A., and Sergeev, S.S., Int. J. Heat Mass Transfer, 2009, no. 52, p. 4308.

    Article  Google Scholar 

  6. Leontiev, A.I., Kavtaradze, R.Z., Shibanov, A.V., Zelentsov, A.A., and Sergeev, S.S., Izv. Ross. Akad. Nauk, 2009, no. 2, p. 49.

    Google Scholar 

  7. Magnussen, B.F. and Hjertager, B.H., Abstracts of Papers, 16th Int. Symp. on Combustion, Cambrige, 1976, p. 719.

    MATH  Google Scholar 

  8. Kavtaradze, R.Z., Zeilinger, K., and Zitzler G., Teplofiz. Vys. Temp., 2005, vol. 43, no. 6, p. 947.

    Google Scholar 

  9. Kavtaradze, R., Zelentsov, A., Gladyshev, S., Kavtaradze, Z., and Onishchenko, D., SAE Int. Paper, no. 2012-01-1217. 2007

    Google Scholar 

  10. Kavtaradze, R.Z., Lokal’nyi teploobmen v porshnevykh dvigatelyakh (Local Heat Transfer in Piston Engines), Moscow: Mosk. Gos. Tekh. Univ. im. Baumana, 2007, 2nd ed.

    Google Scholar 

  11. Kavtaradze, R.Z., Gaivoronskii, A.I., Fedorov, V.A., Onishchenko, D.O., and Shibanov, A.V., High Temp., 2007, vol. 45, no. 5, p. 673.

    Article  Google Scholar 

  12. Hanjali, K., Popova, M., Hadziabdi, M., and Robust, A., Int. J. Heat Fluid Flow, 2004, no. 25, p. 897.

    Article  Google Scholar 

  13. Popova, M. and Hanjali, K., Proc. 3rd M.I.T. Conf. on Comput. Fluid and Solid Mechanics, 2005.

    Google Scholar 

  14. Durbin, P.A., Theor. Comput. Fluid Dyn., 1991, vol. 3, no. 1, p. 1.

    MathSciNet  Google Scholar 

  15. FIRE: Users Manual, Version 2013, AVL List, Graz, 2013.

  16. Patankar, S.V., Computation of Conduction and Duct Flow Heat Transfer, Maple Grove, MN: Innovative Research, 1990.

    Google Scholar 

  17. Kavtaradze, R.Z., Teplofizicheskie protsessy v dizelyakh, konvertirovannykh na prirodnyi gaz i vodorod (Thermophysical Processes in Diesel Engines Converted to Natural Gas and Hydrogen), Moscow: Mosk. Gos. Tekh. Univ. im. Baumana, 2011.

    Google Scholar 

  18. Kalinin, E.K., Yarkho, S.A., and Dreitser, G.A., Intensifikatsiya teploobmena v kanalakh (Enhancement of Heat Transfer in Channels), Moscow: Mashinostroenie, 1972.

    Google Scholar 

  19. Kiknadze, G.I., Gachechiladze, I.A., and Alekseev, V.V., Samoorganizatsiya smerchevykh strui v potokakh vyazkikh sploshnykh sred i intensifikatsiya teploobmena, soprovozhdayushchaya eto yavlenie (Self-organization of Tornado Jets in Viscous Continuous Media and Intensification of Heat Transfer Accompanying This Phenomenon), Moscow: Mosk. Energ. Inst., 2005.

    Google Scholar 

  20. Kiknadze, G.I. and Krasnov, Yu.K., Dokl. Akad. Nauk SSSR, 1986, vol. 290, no. 6, p. 1315.

    MathSciNet  Google Scholar 

  21. Bystrov, Yu.A., Isaev, S.A., Kudryavtsev, N.A., and Leont’ev, A.I., Chislennoe modelirovanie vikhrevoi intensifikatsii teploobmena v paketakh trub (Numerical Simulation of Vortex Intensification of Heat Transfer in Pipe Batches), St. Petersburg: Sudostroenie, 2005.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Z. Kavtaradze.

Additional information

Original Russian Text © A.I. Leontiev, R.Z. Kavtaradze, D.O. Onishchenko, A.S. Golosov, S.A. Pankratov, 2016, published in Teplofizika Vysokikh Temperatur, 2016, Vol. 54, No. 1, pp. 99–107.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leontiev, A.I., Kavtaradze, R.Z., Onishchenko, D.O. et al. Improvement of piston engine operation efficiency by direct conversion of the heat of exhaust gases into electric energy. High Temp 54, 105–112 (2016). https://doi.org/10.1134/S0018151X16010053

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0018151X16010053

Keywords

Navigation