Skip to main content
Log in

Femtosecond laser assisted hatching: Dependence of zona pellucida drilling efficiency and embryo development on laser wavelength and pulse energy

  • Plasma Investigations
  • Published:
High Temperature Aims and scope

An Erratum to this article was published on 01 February 2023

This article has been updated

Abstract

Ultrashort laser pulses have enabled highly precise and delicate processing of biological specimens. We present the results of using femtosecond laser pulses for dissection of zona pellucida (ZP) in mouse embryos during assisted hatching procedure. We studied the effects of application of femtosecond laser radiation in the infrared (1028 nm) and visible (514 nm) wavelength ranges. Laser irradiation parameters were optimized so as not to compromise the viability of the treated embryos. We have demonstrated that application of femtosecond laser pulses with the energies in the range of 250–320 nJ (for the wavelength of 1028 nm) and 47–112 nJ (for 514 nm) resulted in efficient ZP dissection. Femtosecond laser-assisted ZP drilling does not slow down the development of pre-implantation embryos and leads to 90–95% frequency of complete hatching. The thermal effects can be significantly lower when femtosecond lasers are used as compared to continuous wave or long-pulse lasers. It is crucial when dealing with living cells or organisms. By optimizing femtosecond laser radiation parameters assisted hatching as well as a wide range of embryo-surgical procedures can be efficiently performed, thus creating a great potential of using femtosecond lasers as a multi-purpose “tool of choice” for specialists in the fields of embryology and developmental biology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Change history

References

  1. Neev, J., Tadir, Y., Ho, P., Berns, M., Asch, R., and Ord, T., J. Assist. Reprod. Genet., 1992, vol. 9, no. 6, p. 513.

    Article  Google Scholar 

  2. De Vos, A. and Van Steiterghem, A., Cells Tissues Organs, 2000, vol. 166, p. 220.

    Article  Google Scholar 

  3. Balaban, B., Urman, B., Alatas, C., Mercan, R., Mumcu, A., and Isiklar, A., Hum. Reprod., 2002, vol. 17, no. 5, p. 1239.

    Article  Google Scholar 

  4. Ebner, T., Moser, M., and Tews, G., Hum. Reprod. Update, 2005, vol. 11, no. 4, p. 425.

    Article  Google Scholar 

  5. Boada, M., Carrera, M., De La, Iglesia., Sandalinas, M., Barri, P.N., and Veiga, A., J. Assist. Reprod. Genet., 1998, vol. 15, p. 302.

    Article  Google Scholar 

  6. Han, T.S., Sagoskin, A.W., Graham, G.R., Tucker, M.J., and Liebermann, J., Fertil. Steril., 2003, vol. 80, no. 2, p. 453.

    Article  Google Scholar 

  7. Taylor, T.S., Gilchrist, J.W., Hallowell, S.V., Hanshew, K.K., Orris, J.J., Glassner, M.J., and Wininger, D., J. Assist. Reprod. Genet., 2010, vol. 27, p. 663.

    Article  Google Scholar 

  8. Joris, H., De Vos, A., Janssens, R., Devroey, P., Liebaers, I., and Van Steirteghem, A., Hum. Reprod., 2003, vol. 18, p. 1896.

    Article  Google Scholar 

  9. Sagoskin, A., Levy, M., Tucker, M., Richter, K., and Widra, E., Fertil. Steril., 2007, vol. 87, no. 2, p. 283.

    Article  Google Scholar 

  10. Kanyo, K. and Konc, J., Eur. J. Obstet. Gynecol. Reprod. Biol., 2003, vol. 110, no. 2, p. 176.

    Article  Google Scholar 

  11. Douglas-Hamilton, D.H. and Conia, J., J. Biomed. Opt., 2001, vol. 6, no. 2, p. 205.

    Article  ADS  Google Scholar 

  12. Tucker, M.J. and Ball, G.D., J. Clin. Embryol., 2009, vol. 12, no. 1, p. 5.

    Google Scholar 

  13. Clement-Sengewald, A., Schutze, K., Ashkin, A., Palma, G.A., Kerlen, G., and Brem, G., J. Assist. Reprod. Genet., 1996, vol. 13, no. 2, p. 259.

    Article  Google Scholar 

  14. Clement-Sengewald, A., Buchholz, T., Schutze, K., Berg, U., and Berg, F., J. Assist. Reprod. Genet., 2002, vol. 19, no. 4, p. 183.

    Article  Google Scholar 

  15. Karmenyan, A.V., Shakhbazyan, A.K., SviridovaChailakhyan, T.A., Krivokharchenko, A.S., Chiou, A.E., and Chailakhyan, L.M., Mol. Reprod. Dev., 2009, vol. 76, no. 10, p. 975.

    Article  Google Scholar 

  16. Krivokharchenko, A., Karmenyan, A., Sarkisov, O., Bader, M., Chiou, A., and Shakhbazyan, A., PLoS One, 2012, vol. 7, no. 12.

    Google Scholar 

  17. Torres-Mapa, M.L., Antkowiak, M., Cizmarova, H., Ferrier, D.E.K., Dholakia, K., and Gunn-Moore, F.J., Biomed. Opt. Express, 2011, vol. 2, no. 6, p. 1564.

    Article  Google Scholar 

  18. Rakityanskiy, M.M., Ilina, I.V., Sitnikov, D.S., Ovchinnikov, A.V., Agranat, M.B., Khramova, Yu.V., and Semenova, M.L., Eur. Biophys. J. Biophys. Lett., 2011, vol. 40, no. 1.

    Google Scholar 

  19. Ilina, I.V., Rakityanskiy, M.M., Sitnikov, D.S., Ovchinnikov, A.V., Agranat, M.B., Khramova, Yu.V., and Semenova, M.L., AIP Conf. Proc., 2012, vol. 1464, p. 560.

    Article  ADS  Google Scholar 

  20. Torres-Mapa, M.L., Gardner, J., Bradburn, H., King, J., Dholakia, K., and Gunn-Moore, F.J., Proc. SPIE, 2013, vol. 8611, p. 861104.

    Article  Google Scholar 

  21. Il’ina, I.V., Sitnikov, D.S., Ovchinnikov, A.V., Agranat, M.B., Khramova, Yu.V., and Semenova, M.L., Proc. SPIE, 2012, vol. 8427, p. 1.

    Google Scholar 

  22. Vogel, A., Noack, J., Huttman, G., and Paltauf, G., Appl. Phys. B: Lasers Opt., 2005, vol. 81, no. 8, p. 1015.

    Article  ADS  Google Scholar 

  23. Hogan, B., Beddington, R., Costantini, F., and Lacy, E., Manipulating the Mouse Embryo: A Laboratory Manual, New York: Cold Spring Harbor Lab., 1994.

    Google Scholar 

  24. Petersen, C.G., Mauri, A.L., Baruffi, R.L., Oliveira, J.B., Massaro, F.C., Elder, K., and Franco, J.G., Reprod. Biomed. Online, 2005, vol. 10, no. 2, p. 224.

    Article  Google Scholar 

  25. Chen, S.U., Ho, H.N., Chen, H.F., Chao, K.H., Wu, M.Y., Huang, S.C., Lee, T.Y., and Yang, Y.S., J. Formosan Med. Assoc., 1995, vol. 94, no. 8, p. 463.

    Google Scholar 

  26. Wong, B.C., Boyd, C.A., and Lanzendorf, S.E., Fertil. Steril., 2003, vol. 80, no. 5, p. 1249.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Ilina.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ilina, I.V., Khramova, Y.V., Filatov, M.A. et al. Femtosecond laser assisted hatching: Dependence of zona pellucida drilling efficiency and embryo development on laser wavelength and pulse energy. High Temp 54, 46–51 (2016). https://doi.org/10.1134/S0018151X15060115

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0018151X15060115

Keywords

Navigation