Skip to main content
Log in

Effects of ion slip and Hall current on unsteady Couette flow of a dusty fluid through porous media with heat transfer

  • Methods of Experimental Investigation and Measurements
  • Published:
High Temperature Aims and scope

Abstract

In this study, the unsteady Couette flow with heat transfer of a dusty viscous incompressible electrically conducting fluid through a porous medium is studied with the consideration of both Hall current and ion slip. The parallel plates are porous and subjected to a uniform suction from above and injection from below while an external uniform magnetic field is applied perpendicular to the plates. A numerical solution for the governing momentum and energy equations are obtained using the finite difference method. The influence of magnetic field parameters, the porosity of the medium, suction or injection velocity, and ion slip parameter on velocity and temperature fields of both fluid and dust particles is demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abdeen, M.A.M., Attia, H.A., Abbas, W., and Abd ElMeged, W., Indian J. Phys., 2013, vol. 87, p. 767.

    Article  ADS  Google Scholar 

  2. Attia, H.A., Abbas, W., Abdeen, M.A.M., and Abdin, E.-D.A., Bulg. Chem. Commun., 2014, vol. 46, p. 535.

    Google Scholar 

  3. Lohrabi, J., PhD Thesis, Tennessee Technological University, 1980.

    Google Scholar 

  4. Saffman, P.G., J. Fluid Mech., 1962, vol. 13, p. 120.

    Article  ADS  MATH  MathSciNet  Google Scholar 

  5. Mitra, P., Rev. Roum. Sci. Tech., Ser. Mec. Appl., 1982, vol. 27, p. 57.

    MATH  Google Scholar 

  6. Madhura, K.R., Gireesha, B.J., and Bagewadi, C.S., Adv. Theor. Appl. Mech., 2009, vol. 2, p. 1.

    MATH  Google Scholar 

  7. Attia, H.A., Abbas, W., Abdeen, M.A.M., and Emam, M.S., Eur. J. Environ. Civil Eng., 2014, vol. 18, p. 241.

    Article  Google Scholar 

  8. Singh, K.K., Indian J. Pure Appl. Math., 1976, vol. 8, p. 1124.

    Google Scholar 

  9. Mitra, P. and Bhattacharyya, P., Acta Mechanica, 1981, vol. 39, p. 171.

    Article  ADS  MATH  Google Scholar 

  10. Attia, H.A., Commun. Nonlinear Sci., 2008, vol. 13, p. 1077.

    Article  MATH  MathSciNet  Google Scholar 

  11. Ezzat, M.A., El-Bary, A.A., and Morseym, M., Comput. Math. Appl., 2010, vol. 59, p. 2868.

    Article  MATH  MathSciNet  Google Scholar 

  12. Basant, K.J. and Apere, C.A., Appl. Math. Model., 2013, vol. 37, p. 1920.

    Article  MathSciNet  Google Scholar 

  13. Attia, H.A., Cent. Eur. J. Phys., 2005, vol. 3, p. 484.

    Google Scholar 

  14. Attia, H.A., Abbas, W., and Abdeen, M.A.M., J. Braz. Soc. Mech. Sci. Eng., 2015. doi 10.1007/s40430-015-0311-y

    Google Scholar 

  15. Soundalgekar, V.M., Vighnesam, N.V., and Takhar, H.S., IEEE Trans. Plasma Sci., 1979, vol. 7, p. 178.

    Article  ADS  Google Scholar 

  16. Attia, H.A., Abbas, W., Abdeen, M.A.M., and Said, A.A.M., Sadhana, 2015, vol. 40, p. 183.

    Article  MathSciNet  Google Scholar 

  17. Attia, H.A. and Sayed-Ahmed, M.E., Appl. Math. Model., 2004, vol. 28, p. 1027.

    Article  MATH  Google Scholar 

  18. Attia, H.A. and Abdeen, M.A.M., J. Appl. Mech. Tech. Phys., 2013, vol. 54, p. 268.

    Article  ADS  MATH  Google Scholar 

  19. Crammer, K.R. and Pai, S. Magnetofluid Dynamics for Engineer and Scientists, New York: McGraw–Hill, 1973.

    Google Scholar 

  20. Sutton, G.W. and Sherman, A., Engineering Magnetohydrodynamics, New York: McGraw–Hill, 1965.

    Google Scholar 

  21. Golovanov, A.N., Ruleva, E.V., and Yakimov, A.S., High Temp., 2011, vol. 49, no. 6, p. 917.

    Article  Google Scholar 

  22. Terekhov, V.V., and Terekhov, V.I., High Temp., 2012, vol. 50, no. 1, p. 91.

    Article  Google Scholar 

  23. Valueva, E.P., High Temp., 2012, vol. 50, no. 2, p. 278.

    Article  Google Scholar 

  24. Bég, O.A., Zueco, J., and Takhar, H. S., Communications in Nonlinear Science and Numerical Simulation, 2009, vol. 14, p. 1082.

    Article  ADS  Google Scholar 

  25. Schlichting, H., Boundary layer theory, Mcgraw-Hill, New York, 1968.

    Google Scholar 

  26. Ames, W.F., Numerical solutions of partial differential equations, Second Ed., Academic Press, New York, 1977.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. A. Attia.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Attia, H.A., Abbas, W., El-Din Abdin, A. et al. Effects of ion slip and Hall current on unsteady Couette flow of a dusty fluid through porous media with heat transfer. High Temp 53, 891–898 (2015). https://doi.org/10.1134/S0018151X15060024

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0018151X15060024

Keywords

Navigation