Skip to main content
Log in

Polymerization accompanied by the formation of colloidal particles and gels: 1. Kinetics of spatially inhomogeneous radical polymerization

  • Radiation Chemistry
  • Published:
High Energy Chemistry Aims and scope Submit manuscript

Abstract

The kinetic model of radical polymerization is based on the assumptions that highly exothermic chain propagation (addition of the monomer to the growing macroradical) is a diffusion-controlled reaction and chain transfer (addition of solvent molecule S to the macroradical to form oligomers and regenerate the primary radical) is an activated kinetic reaction involving S from the nearest environment of the macroradical. The chain propagation rate is determined by the flow of the monomer from the reaction volume into the capture sphere, on the surface of which macroradicals of any length have a quasi-steady-state concentration. The capture sphere is a source of oligomers diffusing from it into the reaction volume. It has been shown that a decrease in the diffusion coefficients with increasing oligomer chain length and increasing local viscosity (due to accumulation of oligomers) leads to a spatially inhomogeneous molecular-mass distribution: long oligomers concentrate in the vicinity of the macroradical and the short ones are built up in the remote zone. The polymerization ends by the formation of “primary blobs” in which the concentration of the monomer (in the oligomer composition) is several orders of magnitude above that in the initial solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kim, I.P. and Shestakov, A.F., High Energy Chem., 2009, vol. 43, no. 6, p. 460.

    Article  CAS  Google Scholar 

  2. Shestakov, A.F. and Kim, I.P., High Energy Chem., 2009, vol. 43, no. 6, p. 499.

    Article  CAS  Google Scholar 

  3. Kim, I.P., Martynenko, I.M., Shul’ga, Yu.M., and Shestakov, A.F., High Energy Chem., 2010, vol. 44, no. 6, p. 449.

    Article  CAS  Google Scholar 

  4. Kim, I.P., Shul’ga, Yu.M., and Shestakov, A.F., High Energy Chem., 2011, vol. 45, no. 1, p. 43.

    Article  CAS  Google Scholar 

  5. Kim, I.P. and Kolesnikova, A.M., Russ. J. Phys. Chem. A, 2011, vol. 85, no. 9, p. 1660.

    Article  CAS  Google Scholar 

  6. Kim, I.P. and Benderskii, V.A., High Energy Chem., 2010, vol. 44, no. 5, p. 357.

    Article  CAS  Google Scholar 

  7. Kim, I.P., Kunitsa, A.A., and Chernyak, A.V., Russ. J. Phys. Chem. A, 2013, vol. 87, no. 11, p. 1845.

    Article  CAS  Google Scholar 

  8. Kim, I.P., Izv. Akad. Nauk, Ser. Khim., 2013, no. 9, p. 2065.

    Google Scholar 

  9. Bagdasar’yan, Kh.S., Teoriya radikal’noi polimerizatsii (Theory of Radical Polymerization), Moscow: Nauka, 1966.

    Google Scholar 

  10. Comprehensive Chemical Kinetics, vol. 14A: Free Radical Polymerization, Bamford, C.H. and Tipper, C.F.H., Eds., Amsterdam: Elsevier, 1976.

    Google Scholar 

  11. Kim, I.P. and Benderskii, V.A., High Energy Chem., 2011, vol. 45, no. 5, p. 372.

    Article  CAS  Google Scholar 

  12. Floy, P., Statistical Mechanics of Chain Molecules, New York: Wiley, 1969.

    Google Scholar 

  13. Grosberg, A.Yu. and Khokhlov, A.R., Statisticheskaya fizika makromolekul (Statistical Physics of Macromolecules), Moscow: Nauka, 1989.

    Google Scholar 

  14. Lifshits, I.M., Zh. Eksp. Teor. Fiz., 1968, vol. 55, p. 2408.

    CAS  Google Scholar 

  15. Semenov, A.N. and Khokhlov, A.R., Usp. Fiz. Nauk, 1988, vol. 156, p. 427.

    Article  CAS  Google Scholar 

  16. Ovchinnikov, A.A., Timashev, S.F., and Belyy, A.A., Kinetics of Diffusion Controlled Chemical Processes, New York: Nova Science, 1989.

    Google Scholar 

  17. Clement, E., Sander, L.M., and Kopelman, R., Phys. Rev. A, 1989, vol. 39, p. 6466.

    Article  CAS  Google Scholar 

  18. Clement, E., Sander, L.M., and Kopelman, R., Phys. Rev. A, 1989, vol. 39, p. 6472.

    Article  CAS  Google Scholar 

  19. Jang, S.S., Blanco, M., Goddard, W.A., Caldwell, G., and Ross, R.B., Macromolecules, 2003, vol. 36, p. 5331.

    Article  CAS  Google Scholar 

  20. D’Amore, M., Talarico, G., and Barone, V., J. Am. Chem. Soc., 2006, vol. 128, p. 1099.

    Article  Google Scholar 

  21. Landau, L.D. and Lifshits, E.E., Gidrodinamika (Hydrodynamics), Moscow: Nauka, 1988.

    Google Scholar 

  22. Vasanthi, R., Bhattacharyya, S., and Bagchi, B., J. Chem. Phys., 2002, vol. 116, p. 1092.

    Article  CAS  Google Scholar 

  23. Ortega, A. and Garciade la Torre, J., J. Chem. Phys., 2003, vol. 119, p. 9914.

    Article  CAS  Google Scholar 

  24. Jain, S., Agge, A., and Kharkhar, D.V., J. Chem. Phys., 2001, vol. 114, p. 553.

    Article  CAS  Google Scholar 

  25. Qiu, X., Wu, X.L., and Xue, J.Z., Phys. Rev. Lett., 1990, vol. 65, p. 516.

    Article  CAS  Google Scholar 

  26. Romer, S., Phys. Rev. Lett., 2000, vol. 85, p. 4980.

    Article  CAS  Google Scholar 

  27. De Gennes, P.G., Scaling Concepts in Polymer Physics, Ithaca, New York: Cornell Univ. Press, 1979.

    Google Scholar 

  28. Doi, M. and Edwards, S.F., The Theory of Polymer Dynamics, New York: Oxford Univ.Press, 1986.

    Google Scholar 

  29. Lubensky, T.C. and Isaakson, J., Phys. Rev. A, 1979, vol. 20, p. 2130.

    Article  CAS  Google Scholar 

  30. von Smoluchowski, M., Z. Phys. Chem., 1917, vol. 29, p. 129.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. P. Kim.

Additional information

Original Russian Text © I.P. Kim, V.A. Benderskii, 2015, published in Khimiya Vysokikh Energii, 2015, Vol. 49, No. 1, pp. 3–11.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, I.P., Benderskii, V.A. Polymerization accompanied by the formation of colloidal particles and gels: 1. Kinetics of spatially inhomogeneous radical polymerization. High Energy Chem 49, 1–9 (2015). https://doi.org/10.1134/S0018143915010063

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0018143915010063

Keywords

Navigation