Skip to main content
Log in

A simple model for predicting the course of photochemical reactions

  • Photochemistry
  • Published:
High Energy Chemistry Aims and scope Submit manuscript

Abstract

The possibility of building and using a simplified model with constant (time-invariant) reaction probabilities for rapid simulation of photochemical processes with the required reliability of the prediction has been shown. A relation between the probabilities of transformations and fundamental molecular characteristics (optical transition probabilities and quantum beat frequencies referring to a nonradiative reaction transition) that can be quantitatively determined with a good degree of certainty has been revealed. For monomolecular isomerization reactions as an example, the attainable level of the accuracy of prediction by the simple model has been estimated, which has been shown to be ∼10% in most cases. It is important that the prediction of the order of magnitude of the key characteristics of photochemical processes, such as quantum yield and the reaction rate, is definitely correct as is required in most applications of photochemistry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Terenin, A.N., Fotonika molekul krasitelei i rodstvennykh organicheskikh soedinenii (Photonics of Dyes and Related Organic Compounds), Leningrad: Nauka, 1967.

    Google Scholar 

  2. Turro, N.J., Molecular Photochemistry, New York: Benjamin, 1965.

    Google Scholar 

  3. Calvert, J.G. and Pitts, J.N., Photochemistry, New York: Wiley, 1966.

    Google Scholar 

  4. Bagdasar’yan, Kh.S., Dvukhkvantovaya fotokhimiya (Two-Quantum Photochemistry), Moscow: Nauka, 1976.

    Google Scholar 

  5. Chibisov, A.K., Usp. Khim., 1981, vol. 50, no. 7, p. 1169.

    Article  CAS  Google Scholar 

  6. Molin, Yu.N., Panfilov, Yu.N., and Petrov, A.K., Infrakrasnaya fotokhimiya (Infrared Photochemistry), Novosibirsk: Nauka, 1985.

    Google Scholar 

  7. Wayne, R.P., Principles and Applications of Photochemistry, Oxford: Oxford Univ. Press, 1988, 2nd ed.

    Google Scholar 

  8. Michl, J. and Bonacic-Koutecky, V., Electronic Aspects of Organic Photochemistry, New York: Wiley, 1991.

    Google Scholar 

  9. Klessinger, M. and Michl, J., Excited States and Photo-Chemistry of Organic Molecules, New York: Wiley-VCH, 1995.

    Google Scholar 

  10. Surface Photochemistry, Anpo, M., Ed., New York: Wiley, 1996.

    Google Scholar 

  11. Maier, G.V., Artyukhov, V.Ya., Bazyl’, O.K., Kopylova, T.N., Kuznetsova, R.T., Rib, N.R., and Sokolova, I.V., Elektronno-vozbuzhdennye sostoyaniya i fotokhimiya organicheskikh soedinenii (Electronically Excited States and Photochemistry of Organic Compounds), Novosibirsk: Nauka, 1997.

    Google Scholar 

  12. Coyle, J.D., Introduction to Organic Photochemistry, New York: Wiley, 1998.

    Google Scholar 

  13. Advances in Photochemistry, vol. 29, Neckers, D.C., Jenks, W.S., and Wolff, T., Eds., Hoboken, NJ: Wiley, 2007.

    Google Scholar 

  14. Turro, N.J., Ramamurthy, V., and Scaiano, J.C., Principles of Molecular Photochemistry: An Introduction, Mill Valley, CA: University Science Books, 2009.

    Google Scholar 

  15. Wardle, B., Principles and Applications of Photochemistry, New York: Wiley, 2009.

    Google Scholar 

  16. Klan, P. and Wirz, J., Photochemistry of Organic Compounds: From Concepts to Practice, Chichester: Wiley, 2009.

    Book  Google Scholar 

  17. Supramolecular Photochemistry: Controlling Photochemical Processes, Ramamurthy, V. and Inoue, Y., Eds., Hoboken, NJ: Wiley, 2011.

    Google Scholar 

  18. Gribov, L.A. and Baranov, V.I., Teoriya i metody rascheta molekulyarnykh protsessov: spektry, khimicheskie prevrashcheniya i molekulyarnaya logika (Theory and Methods of Calculation of Molecular Processes: Spectra, Chemical Transformations, and Molecular Logics), Moscow: KomKniga, 2006.

    Google Scholar 

  19. Gribov, L.A. and Baranov, V.I., High Energy Chem., 2010, vol. 44, no. 6, p. 462.

    Article  CAS  Google Scholar 

  20. Baranov, V.I., Gribov, L.A., Dridger, V.E., Iskhakov, M.Kh., and Mikhailov, I.V., High Energy Chem., 2009, vol. 43, no. 5, p. 362.

    Article  CAS  Google Scholar 

  21. Baranov, V.I., Gribov, L.A., Dridger, V.E., Iskhakov, M.Kh., and Mikhailov, I.V., High Energy Chem., 2009, vol. 43, no. 6, p. 489.

    Article  CAS  Google Scholar 

  22. Baranov, V.I., Gribov, L.A., Dridger, V.E., and Mikhailov, I.V., High Energy Chem., 2010, vol. 44, no. 3, p. 181.

    Article  CAS  Google Scholar 

  23. Baranov, V.I., Gribov, L.A., Iskhakov, M.Kh., and Mikhailov, I.V., High Energy Chem., 2010, vol. 44, no. 4, p. 277.

    Article  CAS  Google Scholar 

  24. Baranov, V.I., Gribov, L.A., Iskhakov, M.Kh., and Mikhailov, I.V., High Energy Chem., 2011, vol. 45, no. 6, p. 486.

    Article  CAS  Google Scholar 

  25. Baranov, V.I., Gribov, L.A., Mikhailov, I.V., and Poteshnaya, N.I., High Energy Chem., 2014, vol. 48, no. 1, p. 30.

    Article  CAS  Google Scholar 

  26. Baranov, V.I., Gribov, L.A., and Pavlyuchko, A.I., Khim. Vys. Energ., 2013, vol. 47, no. 1, p. 52.

    Google Scholar 

  27. Gribov, L.A. and Baranov, V.I., Ot molekul k zhizni (From Molecules to Life), Moscow: Krasand, 2012.

    Google Scholar 

  28. Gribov, L.A., Baranov, V.I., and Dement’ev, V.A., Izv. Akad. Nauk, Ser. Khim., 2006, no. 8, p. 1267.

    Google Scholar 

  29. Gribov, L.A., Baranov, V.I., and Zelentsov, D.Yu., Elektronno-kolebatel’nye spektry mnogoatomnykh molekul. Teoriya i metody rascheta (Vibronic Spectra of Polyatomic Molecules: Theory and Calculation Methods), Moscow: Nauka, 1997.

    Google Scholar 

  30. Felker, P.M. and Zewail, A.H., Chem. Phys. Lett., 1983, vol. 102, p. 113.

    Article  CAS  Google Scholar 

  31. Felker, P.M. and Zewail, A.H., Phys. Rev. Lett., 1984, vol. 53, p. 501.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. A. Gribov.

Additional information

Original Russian Text © V.I. Baranov, L.A. Gribov, 2014, published in Khimiya Vysokikh Energii, 2014, Vol. 48, No. 6, pp. 459–466.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baranov, V.I., Gribov, L.A. A simple model for predicting the course of photochemical reactions. High Energy Chem 48, 363–370 (2014). https://doi.org/10.1134/S0018143914060022

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0018143914060022

Keywords

Navigation