Skip to main content
Log in

Application of strain analysis to estimate pressure solution processes in regional shear zones

  • Published:
Geotectonics Aims and scope

Abstract

This paper considers the basic principles of the strain analysis method based on the analysis of antitaxial regeneration fibrous fringes around linear rigid inclusions in a low-viscosity rock matrix. This method has been developed for pressure shadows composed of fibrous minerals, whose orientation is controlled by the major elongation direction rather than the orientation of rigid inclusions. This approach is applicable only for rocks exposed to uniform coaxial straining. The strain ellipse is calculated in two ways: for three variably oriented strain markers, it is calculated using Mohr’s circles, and for numerous strain markers by average body ellipse. The strain ellipsoid is calculated using the parameters of a few strain ellipses calculated with three and more non-parallel planes. This paper provides the data on the method testing in reference sites of Dora–Pil’ ore field in the Upper Indigirka district and Vangash area in the Yenisei Range. Regeneration fibrous fringes around fragments of fern fossils and linear rutile metacrystals were used as markers. The results of strain analysis obtained for the reference sites in the Upper Indigirka district made it possible to describe the signs of variable strain stages of developing strike-slip zones making up the Adycha–Taryn Fault Zone. Sublatitudinal ore-bearing strike-slip zones are characterized by a subvertical orientation of the elongation axes X of elongated strain ellipsoids, which are subperpendicular to quartz–carbonate veins and slope kink zones. NW-trending strike-slip zones are characterized by subhorizontal orientation of the Z shortening axes of flattened strain ellipsoids, which are subparallel to the normals of quartz–carbonate veins and veinlets. The results of strain analysis obtained for reference sites in the Vangash area made it possible to describe the thrust strain environment following the metamorphism stage and to reveal specific features in the formation of the strain textures of ore-bearing rocks based on their rheological properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Yu. Akimov, A. V. Kryuchkov, T. L. Krylova, and A. A. Sidorov, “The Taryn vein–disseminated ore deposit: A new type of gold mineralization in the Verkhnyaya Indigirka Region, Yakutia,” Dokl. Earth Sci. 397, 737–742 (2004).

    Google Scholar 

  2. N. Yu. Vasil’ev and A. O. Mostryukov, “Tectonophysical reconstruction of noble metal settling conditions in dunites of a layered massif,” in M.V. Gzovskii i razvitie tektonofiziki, Ed. by Yu. G. Leonov (Nauka, Moscow, 2000), pp. 281–295.

    Google Scholar 

  3. V. A. Vernikovsky and A. E. Vernikovskaya, “Tectonics and evolution of granitoid magmatism in the Yenisei Ridge,” Russ. Geol. Geophys. 47, 32–50 (2006).

    Google Scholar 

  4. A. V. Vikhert, “Estiamtion of rock deformation from grains of arbitrary shapes,” Geotektonika, No. 1, 59–68 (1988).

    Google Scholar 

  5. V. N. Voytenko, A. K. Khudolei, and I. F. Gertner, “Influence of deformation value on chemical composition of sandstones: A case study of the Talas Alatau greenschist complex, Kyrgystan, in Materialy XXXVII Tektonicheskogo soveshchaniya, Vol. 2: Evoliutsiya tektonicheskikh protsessov v istorii Zemli, Ed. by Yu. V. Karyakin (GEOS, Moscow, 2004), pp. 140–142.

    Google Scholar 

  6. V. A. Galkin, “Stress-analysis in petrostructural studies of rocks,” Vestn. Mosk. Univ. Ser. 4: Geol., No. 4, 35–50 (1992).

    Google Scholar 

  7. M. V. Gzovskii, Main Tectonophysical Issues and Tectonics of the Baidzhansai Anticlinorium (Izd. Akad. Nauk SSSR, Moscow, 1959), Pts. I and II [in Russian].

    Google Scholar 

  8. M. V. Gzovskii, Main Tectonophysical Issues and Tectonics of the Baidzhansai Anticlinorium (Izd. Akad. Nauk SSSR, Moscow, 1963), Pts. III and IV [in Russian].

    Google Scholar 

  9. D. W. Durney and J. G. Ramsay, “Incremental deformations measured by syntectonic crystal growths,” in Gravity and Tectonics, Ed. by K. A. De Jong and R. Scholten (Wiley, New York, 1973), pp. 67–96.

    Google Scholar 

  10. B. N. Imamendinov, V. N. Voytenko, and D. N. Zadorozhnyi, “Structural evolution of pyrites of the Dora-Pil’ gold ore field, East Yakutia,” in Ontogeniya mineralov i ee znachenie dlia resheniya geologicheskikh pricladnykh i nauchnykh zadach (k 100-letiyu so dnya rozhdeniya professora D. P. Grigoreva), Ed. by Yu. B. Marin, M. V. Morozov, and D. A. Petrov (Ross. Mineral. O–vo, St Petersburg, 2009), pp. 60–62.

    Google Scholar 

  11. A. B. Kirmasov, Fundamentals of Structural Analysis (Nauchn. mir, Moscow, 2011) [in Russian].

    Google Scholar 

  12. A. B. Kirmasov, “Strain-analysis of cleavage-affected detrital rocks: Mechanisms and quantitative estimate of deformation,” Vestn. Mosk. Univ. Ser. 4: Geol., No. 6, 12–20 (2002).

    Google Scholar 

  13. A. V. Luk’yanov, “Strain-analysis as a method of quantitative study of tectonic deformations,” in Eksperimental’naya tektonika i polevaya tektonofizika, Ed. by A. V. Chekunov (Nauk. Dumka, Kiev, 1991), pp. 126–131.

    Google Scholar 

  14. Yu. V. Miller, Structure of the Archean Greenschist Belts (Nauka, Leningrad, 1988) [in Russian].

    Google Scholar 

  15. E. I. Patalakha, Tectonofacies Analysis of the Phaerozoic Folded Structures: Substantiation, Techniques, and Application (Nauka, Moscow, 1985) [in Russian].

    Google Scholar 

  16. E. I. Patalakha and T. V. Giorgobiani, Structural Analysis of Linear Folding: A Case Study of the Karatau Ridge (Caledonian Cycle) (Nauka Kaz. SSR, Alma-Ata, 1975) [in Russian].

    Google Scholar 

  17. A. V. Prokop’v, G. N. Gamyanin, A. G. Bakharev, V. V. Alpatov, A. I. Zaitsev, “Tectonics, geodynamics, and metallogeny of the zone of junction and interaction (interference) between the Verkhoyansk fold-thrust belt, Okhotsk terrane, and Kolyma–Omolon microcontinent,” in Rudogenez i metallogeniya vostoka Azii (IGABM SO RAN, Yakutsk, 2006), pp. 141–145.

    Google Scholar 

  18. A. I. Rodygin, Methods of Strain-Analysis: A Textbook (Tomsk. Gos. Univ., Tomsk, 1996) [in Russian].

    Google Scholar 

  19. A. M. Sazonov, A. A. Anan’ev, T. V. Poleva, A. N. Khokhlov, V. S. Vlasov, E. A. Zvyagina, A. V. Fedorova, V. A. Tishin, and S. I. Leont’ev, “Gold ore metallogeny of the Yenisei Range: Geologic-structural position and structural types of ore fields,” Zh. Sib. Fed. Univ., Tekhn. Tekhnol., No. 4, 371–395 (2010).

    Google Scholar 

  20. A. A. Trofimov, Fundamentals of Mining Geometry (Mosk. Gos. Univ., Moscow, 1980) [in Russian].

    Google Scholar 

  21. A. K. Khudolei and S. A. Semiletkin, “Morphology and evolution of folded and fault structures of the Talas Alatau, North Tien Shan,” Geotektonika, No. 1, 84–93 (1992).

    Google Scholar 

  22. V. G. Shakhtyrov, Doctoral Dissertation in Geology and Mineralogy (SVKNII, Magadan, 2009).

    Google Scholar 

  23. V. N. Sholpo, Alpine Geodynamics of the Greater Caucasus (Nedra, Moscow, 1978) [in Russian].

    Google Scholar 

  24. F. L. Yakovlev, V. N. Voytenko, A. K. Khudolei, and A. V. Marinin, “Relationship between shortening strains in the folded domain and competent layer,” in Materialy XXXVI Tektonicheskogo soveshchaniya, Ed. by Yu. V. Karyakin (GEOS, Moscow, 2003), Vol. 2, pp. 325–329.

    Google Scholar 

  25. T. G. Blenkinsop, Deformation Microstructures and Mechanisms in Minerals and Rocks (Springer, Oxford, 2002).

    Google Scholar 

  26. M. T. Brandon and S. Paterson, “Applications of strain: From microstructures to orogenic belts,” Geol. Soc. Am. Today 3, 174–179 (1993).

    Google Scholar 

  27. E. Cloos, “Oölite deformation in the South Mountain fold, Maryland,” Geol. Soc. Am. Bull. 58, 843–918 (1947).

    Article  Google Scholar 

  28. D. G. De Paor, “Strain determination from three known stretches–an exact solution,” J. Struct. Geol. 10, 639–642 (1988).

    Article  Google Scholar 

  29. A. A. De Ronde, R. Heilbronner, H. Stunitz, and J. Tullis, “Localization of deformation and mineral reaction in experimentally deformed plagioclase–olivine aggregates,” Tectonophysics 383, 93–109 (2004).

    Article  Google Scholar 

  30. D. Dunnet, “A technique of finite strain analysis using elliptical particles,” Tectonophysics 7, 117–136 (1969).

    Article  Google Scholar 

  31. E. A. Erslev, “Limited, localized nonvolatile element flux and volume change in Appalachian slates,” Geol. Soc. Am. Bull. 110, 900–915 (1998).

    Article  Google Scholar 

  32. E. A. Erslev and H. Ge, “Least–squares center–to–center and mean object ellipse fabric analysis,” J. Struct. Geol. 12, 1047–1059 (1990).

    Article  Google Scholar 

  33. N. Fry, “Random point distribution and strain measurement in rocks,” Tectonophysics 60, 89–105 (1979).

    Article  Google Scholar 

  34. J. F. Hippertt, “Breakdown of feldspar, volume gain and lateral mass transfer during mylonitization of granitoid in a low metamorphic grade shear zone,” J. Struct. Geol. 20, 175–193 (1998).

    Article  Google Scholar 

  35. A. K. Khudoley, “Structural and strain analyses of the middle part of the Tallasian Alatau ridge (Middle Asia, Kirgiystan),” J. Struct. Geol. 15, 693–706 (1993).

    Article  Google Scholar 

  36. R. J. Lisle, Geological Strain Analysis: A Manual for the Rf/φ' Technique (Pergamon, Oxford, 1985).

    Google Scholar 

  37. R. J. Lisle and D. M. Ragan, “Strain from three stretches–a simple method,” J. Struct. Geol. 10, 905–906 (1988).

    Article  Google Scholar 

  38. G. E. Lloyd and C. C. Ferguson, “Belemnites, strain analysis and regional tectonics: A critical appraisal,” Tectonophysics 169, 239–253 (1998).

    Google Scholar 

  39. M. Markley and S. Wojtal, “Mesoscopic structure, strain, and volume loss in folded cover strata, Valley and Ridge Province, MD,” Am. J. Sci. 296, 23–57 (1996).

    Article  Google Scholar 

  40. N. Nakamura and G. J. Borradaile, “Strain, anisotropy of an hysteretic remanence, and anisotropy of magnetic susceptibility in a slaty tuff,” Phys. Earth Planet. Inter. 125, 85–93 (2001).

    Article  Google Scholar 

  41. W. N. Owens, “The calculation of a best-fit ellipsoid from elliptical sections on arbitrarily oriented planes,” J. Struct. Geol. 6, 611–618 (1984).

    Article  Google Scholar 

  42. C. W. Passchier and R. A. J. Trouw, Microtectonics (Springer, Berlin, 2005).

    Google Scholar 

  43. J. G. Ramsay, Folding and Fracturing of Rocks (McGraw-Hill, New York, 1967).

    Google Scholar 

  44. J. G. Ramsay and M. I. Huber, The Techniques of Modern Structural Geology, Vol. 1: Strain Analysis (Academic Press, London, 1983).

    Google Scholar 

  45. U. Ring and M. T. Brandon, “Ductile deformation and mass loss in the Franciscan Subduction Complex: implication for exhumation processes in accretionary wedges,” in Exhumation Processes: Normal Faulting, Ductile Flow and Erosion, Vol. 154 of Geol. Soc. London, Spec. Publ., Ed. by U. Ring, M. T. Brandon, G. S. Lister, and S. Willett (London, 1999), pp. 55–86.

    Google Scholar 

  46. V. N. Voitenko and I. Yu. Khlebalin, “The finite strain estimation method, based on fibrous quartz orientation in pressure shadows around rigid inclusion in Upper Triassic’s siltstone,” in 9th Meeting of the Central European Tectonic Studies Groups, Ed. by S. Ulrich, O. Lexa, P. Závada, and P. Jerábek (2011), pp. 91–92.

    Google Scholar 

  47. V. N. Voytenko and A. K. Khudoley, “Structural evolution of metamorphic rocks in the Talas Alatau, Tien Shan, Central Asia: Implication for early stages of the Talas–Ferghana Fault,” C. R. Geosci. 344, 138–148 (2012).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. N. Voytenko.

Additional information

Original Russian Text © V.N. Voytenko, I.Yu. Khlebalin, V.A. Senotrusov, 2016, published in Geotektonika, 2016, No. 1, pp. 62–80.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Voytenko, V.N., Khlebalin, I.Y. & Senotrusov, V.A. Application of strain analysis to estimate pressure solution processes in regional shear zones. Geotecton. 50, 54–70 (2016). https://doi.org/10.1134/S0016852116010064

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016852116010064

Keywords

Navigation