Skip to main content
Log in

Tectonics and geodynamics of granulite-gneiss complexes in the East European Craton

  • Published:
Geotectonics Aims and scope

Abstract

The Neoarchean and Paleoproterozoic granulite-gneiss complexes of the northern East European Craton, including their tectonic setting, accompanying igneous and sedimentary rocks, character of metamorphism and deep structure are considered in this paper. A similar approach was applied to the description and interpretation of the granulite-gneiss complexes of the Grenville-Sveconorwegian Orogen localized in the present-day structure of the European and North American continents. One of the most important results of this study is the recognition of a new type of tectonic structures called intracontinental oval orogens. These orogens were formed in the inner domain of the Neoarchean-Proterozoic supercontinent (2.8–0.85 Ga), which is called Lauroscandia. The extensional setting, which was initiated by a series of mantle plumes, locally passing to spreading but did not lead to the eventual breakup of the supercontinent and was followed by intracontinental collisional compression accompanied by closure of short-lived local oceans, subduction, and obduction. The Neoarchean and Proterozoic granulite-gneiss belts and areas of the East European Craton are components of the Karelian-Belomorian, Kola, Volgo-Uralia, Lauro-Russian, and Grenville-Sveconorwegian intracontinental oval orogens formed in the inner domain of Lauroscandia as a result of mantle-plume and plate-tectonic processes initiated by mantle superplumes. The geodynamic settings and tectonic processes in the Neoarchean-Proterozoic supercontinent differed markedly from both the Archean tectonics of miniplates and the Phanerozoic plate tectonics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. E. V. Bibikova, T. I. Kirnozova, L. P. Popova, A. V. Postnikov, V. A. Makarov, and A. A. Kremenetsky, “Age and correlation of igneous rocks from granulite and amphibolite complexes in the Volga-Ural region of the East European Platform,” Strat. Geol. Correlation 2(3), 3–7 (1994).

    Google Scholar 

  2. S. V. Bogdanova, The Earth’s Crust of the Russian Plate in Early Precambrian: The Case of Volgo-Uralia Segment (Nauka, Moscow, 1986) [in Russian].

    Google Scholar 

  3. V. R. Vetrin, E. N. Lepekhina, I. P. Paderin, and N. V. Rodionov, “Stages of the lower crust formation of the Belomorian Mobile Belt, Kola Peninsula,” Dokl. Earth Sci. 425(2), 269–273 (2009).

    Google Scholar 

  4. O. I. Volodichev, The Belomorian Complex of Karelia: Geology and Petrology (Nauka, Leningrad, 1990) [in Russian].

    Google Scholar 

  5. V. A. Glebovitsky, K. O. Kratz, L. P. Bondarenko, et al., Metamorphic Belts of the USSR. Explanatory Notes to the Map of Metamorphic Belts of the USSR on a Scale of 1: 5000 000, Ed., by K. O. Kratz (Inst. Precambr. Geol. Geochron., Leningrad, 1975) [in Russian].

  6. V. B. Dagelaisky and L. P. Bondarenko, “Map of metamorphic complexes in basement of the Russian Plate,” in Metamorphic Complexes in Basement of the Russian Plate (Nauka, Leningrad, 1978) [in Russian].

    Google Scholar 

  7. K. O. Kratz, V. A. Glebovitsky, L. P. Bondarenko, et al., Map of Metamorphic Belts of the USSR on a Scale of 1: 5000 000, Ed. by K. O. Kratz (Leningrad. Kartfabrika, Leningrad, 1975) [in Russian].

  8. L. V. Matveeva, S. B. Lobach-Zhuchenko, V. P. Chekulaev, and N. A. Arestova, “Geology of Neoarchean granulite metamorphism in the Onega region,” in Granulite and Eclogite Complexes in the Earth’s History (Inst. Geol., Karelian Sci. Center, Petrozavodsk, 2011), pp. 132–134 [in Russian].

    Google Scholar 

  9. M. V. Mints, “Paleoproterozoic supercontinent: origin and evolution of accretionary and collisional orogens exemplified in northern cratons,” Geotectonics 41(4), 257–280 (2007).

    Google Scholar 

  10. M. V. Mints, “Granulite-gneiss complexes in Early Precambrian crust of the East European craton: geodynamic settings of protolith formation, high-grade metamorphism, and structure formation,” in Proceedings of the 2nd Russian Conference on Precambrian Geology and Geodynamics: Granulite Complexes in Precambrian and Phanerozoic Geological Evolution (TsIK, St. Petersburg, 2007), pp. 209–212 [in Russian].

    Google Scholar 

  11. M. V. Mints, “3D model of deep structure of the Early Precambrian crust in the East European Craton and paleogeodynamic implications,” Geotectonics 45(4), 267–290 (2011).

    Google Scholar 

  12. M. V. Mints, V. N. Glaznev, A. N. Konilov, A. P. Nikitichev, A. B. Raevsky, Yu. N. Sedykh, V. M. Stupak, and V. I. Fonarev, Early Precambrian in Northeast of the Baltic Shield: Paleogeodynamics, Structure and Evolution of the Continental Crust (Nauchnyi mir, Moscow, 1996) [in Russian].

    Google Scholar 

  13. M. V. Mints, A. K. Suleimanov, P. S. Babayants, E. A. Belousova, Yu. I. Blokh, M. M. Bogina, V. A. Bush, K. A. Dokukina, N. G. Zamozhnyaya, V. L. Zlobin, T. V. Kaulina, A. N. Konilov, V. O. Mikhailov, L. M. Natapov, V. B. Piip, V. M. Stupak, S. A. Tikhotsky, A. A. Trusov, I. B. Filippova, and D. Yu. Shur, Deep Structure, Evolution, and Mineral Resources of Early Precambrian Basement of the East European Platform: Interpretation of Data from 1-EU Reference Profile, 4B and Tatseis Profiles (GEOKART, Moscow) [in Russian].

  14. N. V. Nevolin and T. A. Lapinskaya, Geological-Petrographic Map of Basement in the East European Platform on a Scale of 1: 2500000 (VNIIGeofizika, Moscow; Kiev, 1976) [in Russian].

    Google Scholar 

  15. A. I. Slabunov, N. E. Korol, N. G. Berezhnaya, O. I. Volodichev, and O. S. Sibelev, “Main stages of basic granulite formation of Onega Complex in the Karelian Craton: petrology and isotopic age (SHRIMP II) of zircons,” in Granulite and Eclogite Complexes in the Earth’s History (Inst. Geol., Karelian Sci. Center, Petrozavodsk, 2011), pp. 215–217 [in Russian].

    Google Scholar 

  16. E. V. Sharkov, “Proterozoic anorthosite-rapakivi granite complexes of the East European Craton: a case of within-plate magmatism under conditions of anomalously thick sialic crust,” Litosfera, No. 4, 3–21 (2005).

    Google Scholar 

  17. E. V. Sharkov, Formation of Layered Intrusions and Related Mineralization (Nauchnyi Mir, Moscow, 2006) [in Russian].

    Google Scholar 

  18. D. H. Abbott and A. E. Isley, “The intensity, occurrence and duration of superplume events and eras over geological time,” J. Geodyn. 34, 265–307 (2002).

    Google Scholar 

  19. K.-I. Ahäll and C. F. Gower, “The Gothian and Labradorian orogens: variations in accretionary tectonism along a Late Paleoproterozoic Laurentia-Baltica margin,” GFF 119, 181–191 (1997).

    Google Scholar 

  20. J. Åndersson, B. Bingen, D. Cornell, L. Johansson, U. Söberlund, and C. Möller, The Sveconorwegian Orogen of Southern Scandinavia: Setting, Petrology and Geochronology of Polymetamorphic High-Grade Terranes. 33 rd IGC, Excursion No. 51, August 2–5, 2008 (33rd IGC, Oslo, 2008).

    Google Scholar 

  21. J. Andersson, C. Möller, and L. Johansson, “Zircon geochronology of migmatite gneisses along the mylonite zone (S. Sweden): a major Sveconorwegian Terrane boundary in the Baltic Shield,” Precam. Res. 114(1/2), 121–147 (2002).

    Google Scholar 

  22. H. Årebäck and J. Stigh, “The nature and origin of an anorthosite associated ilmenite-rich leuconorite, Hakefjorden Complex, South-West Sweden,” Lithos 51(3), 247–267.

  23. I. M. Artemieva, H. Thybo, and M. K. Kaban, “Deep Europe today: geophysical synthesis of the upper mantle structure and lithospheric processes over 3.5 Ga,” in European Lithosphere Dynamics, Ed. by D. G. Gee and R. A. Stephenson (Geol. Soc. Memoirs, London, 2006), Vol. 32, pp. 11–41.

    Google Scholar 

  24. L. D. Ashwal, Anorthosites (Springer, New York, 1993).

    Google Scholar 

  25. L. D. Ashwal, “The temporality of anorthosites,” Can. Mineral. 48, 711–728 (2010).

    Google Scholar 

  26. E. Austin Hegardt, D. Cornel, L. Claesson, S. Simakov, H. Stein, and J. Hannah, “Eclogites in the central part of the Sveconorwegian eastern segment of the Baltic Shield: support for an extensive eclogite terrane,” GFF 127, 221–232 (2005).

    Google Scholar 

  27. B. Bingen, Ø. Nordgulen, and G. Viola, “A four-phase model for the Sveconorwegian Orogeny, SW Scandinavia,” Norwegian J. Geol. 88, 43–72 (2008).

    Google Scholar 

  28. W. Bleeker and R. Ernst, “Short-lived mantle generated magmatic events and their dyke swarms: the key unlocking Earth’s paleogeographic record back to 2.6 Ga,” in Dyke Swarms—Time Markers of Crustal Evolution, Ed. by E. Hanski, S. Mertanen, T. Rämö, and J. Vuollo (Taylor & Francis Group, London, 2006), pp. 3–26.

    Google Scholar 

  29. S. V. Bogdanova, B. Bingen, R. Gorbatschev, T. N. Kheraskova, V. I. Kozlov, V. N. Puchkov, and Yu. A. Volozh, “The East European Craton (Baltica) before and during the assembly of Rodinia,” Precam. Res. 160(1/2), 23–45 (2008).

    Google Scholar 

  30. K. J. E. Boggs and L. Corriveau, “Granulite-facies P-T-t paths and influence of retrograde cation diffusion during polyphase orogenesis, western Grenville Province, Québec,” Geol. Soc. Amer. Memoir 197, 35–64 (2004).

    Google Scholar 

  31. G. C. Bond, P. A. Nickeson, and M. A. Kominz, “Breakup of a supercontinent between 625 Ma and 555Ma: new evidence and implications for continental histories,” Earth Planet. Sci. Lett. 70, 325–345 (1984).

    Google Scholar 

  32. D. C. Bradley, “Secular trends in the geologic record and the supercontinent cycle,” Earth-Sci. Rev. 108, 16–33 (2011).

    Google Scholar 

  33. J. Y. Bradshaw, “Early Cretaceous vein related garnet granulite in Fiordland, Southwest New Zealand: a case for infiltration of mantle-derived CO2-rich fluids,” J. Geol. 97, 697–717 (1989).

    Google Scholar 

  34. T. S. Brewer, K. I. Åhall, D. P. F. Darbyshire, and J. F. Menuge, “Geochemistry of Late Mesoproterozic volcanism in southwestern Scandinavia: implications for Sveconorwegian/Grenvillian”, J. Geol. Soc. London 159, 129–144 (2002).

    Google Scholar 

  35. M. Brown, “Metamorphic conditions in orogenic belts: a record of secular change,” Int. Geol. Rev. 49, 193–234 (2007).

    Google Scholar 

  36. M. Brown, “Metamorphic patterns in orogenic systems and the geological record,” in Earth Accretionary Systems in Space and Time, Ed. by P. A. Cawood and A. Kröner (Geol. Soc. Spec. Publ., London, 2009), vol. 318, pp. 37–74.

    Google Scholar 

  37. P. E. Brown, T. J. Dempster, D. H. W. Hutton, and S. M. Becker, “Extensional tectonics and mafic plutons in the Ketilidian rapakivi granite suite of South Greenland,” Lithos 67, 1–13 (2003).

    Google Scholar 

  38. W. D. Carlson, S. D. Anderson, S. Mosher, J. S. Davidov, W. D. Crawford, and E. D. Lane, “High-pressure metamorphism in the Texas Grenville Orogen: Mesoproterozoic subduction of the southern Laurentian continental margin,” Int. Geol. Rev. 49, 99–119 (2007).

    Google Scholar 

  39. S. D. Carr, R. M. Easton, R. A. Jamieson, and N. G. Culshaw, “Geologic transect across the Grenville Orogen of Ontario and New York,” Can. J. Earth Sci. 37, 193–216 (2000).

    Google Scholar 

  40. N. L. Cates and S. J. Mojzsis, “Pre-3750 Ma supracrustal rocks from the Nuvvuagittuq supracrustal belt, Northern Québec,” Earth Planet. Sci. Lett. 255, 9–21 (2007).

    Google Scholar 

  41. P. A. Cawood, A. A. Nemchin, R. Strachan, T. Prave, and M. Krabbendam, “Sedimentary basin and detrital zircon record along East Laurentia and Baltica during assembly and breakup of Rodinia”, J. Geol. Soc. London 164, 257–275 (2007).

    Google Scholar 

  42. P. A. Cawood, A. Kröner, W. J. Collins, T. M. Kusky, W. D. Mooney, and B. F. Windley, “Accretionary orogens through Earth history,” in Earth Accretionary Systems in Space and Time, Ed. by P. A. Cawood and A. Kröner (Geol. Soc. Spec. Publ., London, 2009), vol. 318, pp. 127–154.

    Google Scholar 

  43. S. Claesson, S. V. Bogdanova, E. V. Bibikova, and R. Gorbatschev, “Isotopic evidence for Palaeoproterozoic accretion in the basement of the East European Craton,” Tectonophysics 339(1/2), 1–18 (2001).

    Google Scholar 

  44. K. C. Condie, “Supercontinents and superplume events: distinguishing signals in the geologic record,” Phys. Earth Planet. Inter. 146, 319–332 (2004).

    Google Scholar 

  45. K. C. Condie and R. C. Aster, “Episodic zircon age spectra of orogenic granitoids: the supercontinent connection and continental growth,” Precam. Res. 180, 227–236 (2010).

    Google Scholar 

  46. K. C. Condie, E. Belousova, W. L. Griffin, and K. N. Sircombe, “Granitoid events in space and time: constraints from igneous and detrital zircon age spectra,” Gondwana Res. 15, 228–242 (2009).

    Google Scholar 

  47. D. Corrigan and S. Hanmer, “Anorthosites and related granitoids in the Grenville Orogen: a product of convective thinning of the lithosphere?” Geology 25(1), 61–64 (1997).

    Google Scholar 

  48. L. Corriveau and O. van Breemen, “Docking of the Central Metasedimentary Belt to Laurentia in Geon 12: Evidence from the 1.17–1.16 Ga Chevreuil intrusive suite and host gneisses, Québec,” Can. J. Earth Sci. 37, 253–269 (2000).

    Google Scholar 

  49. M. A. Cosca, K. Mezger, and E. Essene, “The Baltica-Laurentia connection: Sveconorwegian (Grenvillian) metamorphism, cooling, and unroofing in the Bamble sector, Norway,” J. Geol. 106, 539–552 (1998).

    Google Scholar 

  50. R. A. Cox, A. Indares, and G. R. Dunning, “Temperature-time paths in the high-P Manicouagan imbricate zone, eastern Grenville Province: evidence for two metamorphic events,” Precam. Res. 117, 225–250 (2002).

    Google Scholar 

  51. I. W. D. Dalziel, “Pacific margins of Laurentia and East Antarctica-Australia as a conjugate rift pair: evidence and implications for an Eocambrian supercontinent,” Geology 19, 598–601 (1991).

    Google Scholar 

  52. I. W. D. Dalziel, “Neoproterozoic-Paleozoic geography and tectonics: review, hypothesis, environmental speculation,” Geology 109, 16–42 (1997).

    Google Scholar 

  53. J. S. Daly, V. V. Balagansky, M. J. Timmerman, and M. J. Whitehouse, “The Lapland-Kola Orogen: Palaeoproterozoic collision and accretion of the northern Fennoscandian lithosphere,” Geol. Soc. London Memoirs, 32, 579–598 (2006).

    Google Scholar 

  54. G. V. Depine, C. L. Andronicos, and J. Phipps-Morgan, “Near-isothermal conditions in the middle and lower crust induced by melt migration,” Nature 452, 80–83 (2008).

    Google Scholar 

  55. J. F. Dewey and K. Burke, “Tibetan, Variscan, and Precambrian basement reactivation: products of continental collision,” J. Geol. 81(6), 683–692 (1973).

    Google Scholar 

  56. A. P. Dickin and R. H. McNutt, “The Central Metasedimentary Belt (Grenville Province) as a failed back-arc rift zone: Nd isotope evidence,” Earth Planet. Sci. Lett. 259, 97–106 (2007).

    Google Scholar 

  57. H. Downes, P. Peltonen, I. Manttari, and E. V. Sharkov, “Proterozoic zircon ages from crustal granulite xenoliths, Kola Peninsula, Russia: evidence for crustal growth and reworking”, J. Geol. Soc. London 159, 485–488 (2002).

    Google Scholar 

  58. P. C. England and A. B. Thompson, “Pressure-temperature-time paths of regional metamorphism. 1. Heat transfer during the evolution of regions of thickened continental crust,” J. Petrol. 25, 894–928 (1984).

    Google Scholar 

  59. R. E. Ernst and K. L. Buchan, “Maximum size and distribution in time and space of mantle plumes: evidence from large igneous provinces,” J. Geodyn. 34, 309–342 (2002).

    Google Scholar 

  60. R. E. Ernst, K. L. Buchan, and A. Prokoph, “Large igneous province through time,” in The Precambrian Earth: Tempos and Events, Ed. by P. G. Eriksson et al. (Elsevier, Amsterdam, 2004), pp. 173–180.

    Google Scholar 

  61. D. A. D. Evans, “The palaeomagnetically viable, long-lived, and all-inclusive Rodinia supercontinent reconstruction,” Geol. Soc. London, Spec. Publ. 327, 405–444 (2009).

    Google Scholar 

  62. G. Gáal and R. Gorbatschev, “An outline of the Precambrian evolution of the Baltic Shield,” Precam. Res. 35, 15–52 (1987).

    Google Scholar 

  63. G. M. Gibson and T. R. Ireland, “Granulite formation during continental extension on Fiordland, New Zealand,” Nature 375, 479–482 (1995).

    Google Scholar 

  64. G. M. Gibson and T. R. Ireland, “Black Giants anorthosite, New Zealand: a Paleozoic analogue of Archean stratiform anorthosite and implications for the formation of Archean high-grade terranes,” Geology 27(2), 131–134 (1999).

    Google Scholar 

  65. C. F. Gower and T. E. Krogh, “A U-Pb geochronological review of the Proterozoic history of the eastern Grenville Province,” Can. J. Earth Sci. 39, 795–829 (2002).

    Google Scholar 

  66. C. Groppo, F. Rolfo, and A. Indares, “Partial melting in the Higher Himalayan crystallines of eastern Nepal: the effect of decompression and implications for the’ Channel Flow’ Model,” J. Petrol. 53(5), 1057–1088 (2012).

    Google Scholar 

  67. M. A. Hamilton, J. McLelland, and B. Selleck, “SHRIMP U-Pb zircon geochronology of the anorthosite-mangerite-charnockite-granite suite, Adirondack Mountains, New York: ages of emplacement and metamorphism,” in Proterozoic Tectonic Evolution of the Grenville Orogen in North America, Ed. by R. P. Tollo, L. Corriveau, J. McLelland, and M. J. Bartholomew, Geol. Soc. Amer. Memoir 197, 337–355 (2004).

    Google Scholar 

  68. P. T. C. Hammer, R. M. Clowes, F. A. Cook, A. J. Van der Velden, and K. Vasudevan, “The Lithoprobe trans-continental lithospheric cross sections: imaging the internal structure of the North American continent,” Can. J. Earth Sci. 47, 821–857 (2010).

    Google Scholar 

  69. S. L. Harley, “Proterozoic granulite terranes,” in Proterozoic Crustal Evolution, Ed. by K. C. Condie (Elsevier, Amsterdam, 1992), pp. 301–359.

    Google Scholar 

  70. C. J. Hawkesworth and A. I. S. Kemp, “Evolution of the continental crust,” Nature 443, 811–817 (2006).

    Google Scholar 

  71. L. M. Heaman, “Global mafic magmatism at 2.45 Ga: remnants of an ancient Large Igneous Province?” Geology 25, 299–302 (1997).

    Google Scholar 

  72. P. F. Hoffman, “Did the breakout of Laurentia turn Gondwanaland inside-out?,” Science 252(5011), 1409–1412 (1991).

    Google Scholar 

  73. The Transscandinavian Igneous Belt (TIB) in Sweden: A Review of Its Character and Evolution, Ed. by K. Högdahl, U. B. Andersson, and O. Eklund (Geol. Survey Finland Spec. Paper, 2004), Vol. 37.

    Google Scholar 

  74. P. Hölttä, “Geochemical characteristics of granulite facies rocks in the Archean Varpaisjärvi area, Central Fennoscandian Shield,” Lithos 40, 31–53 (1997).

    Google Scholar 

  75. P. Hölttä and J. Paavola, “P-T-t development of Archaean granulites in Varpaisjärvi Area, Central Finland. I. Effects of multiple metamorphism on the reaction history of mafic rocks,” Lithos 50, 97–120 (2000).

    Google Scholar 

  76. P. Hölttä, H. Huhma, I. Mänttäri, and J. Paavola, “P-T-t development of Archaean granulites in Varpaisjärvi area, Central Finland. II. Dating of high-grade metamorphism with the U-Pb and Sm-Nd methods,” Lithos 50, 121–136 (2000).

    Google Scholar 

  77. A. Hynes and T. Rivers, “Protracted continental collision-evidence from the Grenville Orogen,” Can. J. Earth Sci. 47, 591–620 (2010).

    Google Scholar 

  78. A. Indares and G. Dunning, “Crustal architecture above the high-pressure belt of the Grenville Province in the Manicouagan area: new structural, petrologic and U-Pb age constraints,” Precam. Res. 130, 199–228 (2004).

    Google Scholar 

  79. P. D. Kempton, H. Downes, E. V. Sharkov, V. R. Vetrin, D. A. Ionov, D. A. Carswell, and A. Beard, “Petrology and geochemistry of xenoliths from the northern Baltic Shield: evidence for partial melting and metasomatism in the Lower Erust beneath an Archean terrane,” Lithos 36, 157–184 (1995).

    Google Scholar 

  80. P. D. Kempton, H. Downes, L. A. Neymark, J. A. Wartho, R. E. Zartman, and E. V. Sharkov, “Garnet granulite xenoliths from the northern Baltic Shield-the underplated lower crust of a Palaeoproterozoic large igneous province?” J. Petrol. 42(4), 731–763 (2001).

    Google Scholar 

  81. A. C. Kerr and J. J. Mahoney, “Oceanic plateaus: Problematic plumes, potential paradigm,” Chem. Geol. 241, 332–353 (2007).

    Google Scholar 

  82. F. J. Korhonen, An Investigation into Tectonometamorphic Evolution of the Wilson Lake Terrane, Eastern Grenville Province (University of Minnesota, 2006).

    Google Scholar 

  83. Finnish Reflection Experiment FIRE 2001–2005, Ed. by I. T. Kukkonen and R. Lahtinen (Geol. Survey Finland Spec. Paper, 2006), Vol. 43.

    Google Scholar 

  84. Z. X. Li, S. V. Bogdanova, A. S. Collins, A. Davidson, B. De Waele, R. E. Ernst, I. C. W. Fitzsimons, R. A. Fuck, D. P. Gladkochub, J. Jacobs, K. E. Karlstrom, S. Lu, L. M. Natapov, V. Pease, S. A. Pisarevsky, K. Thrane, and V. Vernikovsky, “Assembly, configuration, and break-up history of Rodinia: a synthesis,” Precam. Res. 160, 179–210 (2008).

    Google Scholar 

  85. J. Ludden and A. Hynes, “The Lithoprobe Abitibi-Grenville transect: two billion years of crust formation and recycling in the Precambrian Shield of Canada,” Can. J. Earth Sci. 37, 459–476 (2000).

    Google Scholar 

  86. I. Mänttäri and P. Hölttä, “U-Pb dating of zircons and monazites from Archean granulites in Varpaisjärvi, Central Finland: evidence for multiple metamorphism and Neoarchean Terrane accretion,” Precam. Res. 118, 101–131 (2002).

    Google Scholar 

  87. G. Markl, B. R. Frost, and K. Bucher, “The origin of anorthosites, mangerites and comagmatic rocks based on evidence from the Lofoten Islands, northern Norway: I. Field relations and estimation of intrinsic variables,” J. Petrol. 39, 1425–1452 (1998).

    Google Scholar 

  88. J. Martignole, A. J. Calvert, R. Friedman, and P. Reynolds, “Crustal evolution along a seismic section across the Grenville Province (western Quebec),” Can. J. Earth Sci. 37, 291–306 (2000).

    Google Scholar 

  89. J. M. McLelland, B. W. Selleck, M. F. Hamilton, and M. E. Bickford, “Late- to post-tectonic setting of some major Proterozoic Anorthosite-Mangerite-Charnockite-Granite (AMCG) suites,” Can. Mineral. 48(4), 729–750 (2010).

    Google Scholar 

  90. S. Mertanen and F. Korhonen, “Paleomagnetic constraints on an Archean-Paleoproterozoic Superior-Karelia connection: new evidence from Archean Karelia,” Precam. Res. 186, 193–204 (2011).

    Google Scholar 

  91. M. V. Mints, “The correlation between the Palaeoproterozoic orogens and granulite belts in the Baltic Shield and North America Craton: a suggested model of Palaeoproterozoic plate tectonics,” Gondwana Res., Vol. 1, 235–246 (1998).

    Google Scholar 

  92. M. V. Mints, T. V. Kaulina, A. N. Konilov, A. V. Krotov, and V. M. Stupak, “The thermal and geodynamic evolution of the Lapland Granulite Belt: implications for the thermal structure of the lower crust during granulite-facies metamorphism,” Gondwana Res. 12, 252–267 (2007).

    Google Scholar 

  93. M. V. Mints and A. N. Konilov, “Thermal structure of the crust during granulite metamorphism: petrological speculations and geodynamic implications,” Mem. Nat. Inst. Polar Res., Spec. Issue, No. 53, 137–156 (1998).

    Google Scholar 

  94. M. V. Mints and A. N. Konilov, “Geodynamic crustal evolution and long-lived supercontinents during the Paleoproterozoic: evidence from granulite belts, collisional and accretionary orogens,” in The Precambrian Earth: Tempos and Events, Ed. by P. G. Eriksson et al. (Elsevier, Amsterdam, 2004), pp. 223–239.

    Google Scholar 

  95. D. P. Moecher, E. D. Anderson, C. A. Cook, and K. Mezger, “The petrogenesis of metamorphosed carbonatites in the Grenville Province, Ontario,” Can. J. Earth Sci. 34, 1185–1201 (1997).

    Google Scholar 

  96. A. Möller, P. J. O’Brien, A. Kennedy, and A. Kröner, “Linking growth episodes of zircon and metamorphic textures to zircon chemistry: an example from the ultrahigh-temperature granulites of Rogaland (SW Norway),” Geol. Soc. London, Spec. Publ. 220, 65–81 (2003).

    Google Scholar 

  97. C. Möller, “Decompressed eclogites in the Sveconor-wegian (-Grenvillian) Orogen of SW Sweden: Petrology and tectonic implications,” J. Metamorphic Geol. 16, 641–656 (1998).

    Google Scholar 

  98. S. Mosher, J. S. F. Levine, and W. D. Carlson, “Mesoproterozoic plate tectonics: a collisional model for the Grenville-aged orogenic belt in the Llano Uplift, Central Texas,” Geology 36(1), 55–58 (2008).

    Google Scholar 

  99. T. Mutanen and H. Huhma, “The 3.5 Ga Siurua trondhjemite gneiss in the Archaean Pudasjärvi Granulite Belt, northern Finland,” Bull. Geol. Soc. Finl. 75(1/2), 51–68 (2003).

    Google Scholar 

  100. J. Paavola, “A communication on the U-Pb and K-Ar age relations of the Archaean basement in the Lapinlahti-Varpaisjärvi area, Central Finland,” in Development of Deformation, Metamorphism, and Metamorphic Blocks in Eastern and Southern Finland, Ed. by K. Korsman, Geol. Surv. Finl. Bull. 339, 7–15 (1986).

    Google Scholar 

  101. J. A. Percival, “Archean high-grade metamorphism,” in Archean Crustal Evolution, Ed by K. C. Condie (Elsevier, Amsterdam, 1994), pp. 357–410.

    Google Scholar 

  102. J. A. Percival, J. K. Mortensen, R. F. Stern, K. D. Card, and N. J. Bégin, “Giant granulite terranes of northeastern Superior Province: the Ashuanipi Complex and Minto Block,” Can. J. Earth Sci. 29, 2287–2308 (1992).

    Google Scholar 

  103. J. A. Percival and T. Skulski, “Tectonothermal evolution of the northern Minto Block, Superior Province, Quebec, Canada,” Can. Mineral. 38, 345–378 (2000).

    Google Scholar 

  104. A. I. Persson, “Absolute (U-Pb) and relative age determinations of intrusive rocks in the Ragunda Rapakivi Complex, Central Sweden,” Precam. Res. 95, 109–127 (1999).

    Google Scholar 

  105. S. A. Pisarevsky, M. T. D. Wingate, and L. B. Harris, “Late Mesoproterozoic (ca. 1.2 Ga) palaeomagnetism of the Albany-Fraser Orogen: no pre-Rodinia Australia-Laurentia connection,” Geophys. J. Int. 155, F6–F11 (2003).

    Google Scholar 

  106. T. Rivers, “Lithotectonic elements of the Grenville Province: review and tectonic implications,” Precam. Res. 86, 117–154 (1997).

    Google Scholar 

  107. T. Rivers, “The Grenville Province as a large hot long-duration collisional orogen-insights from the spatial and thermal evolution of its orogenic fronts,” Geol. Soc. London Spec. Publ. 327, 405–444 (2009).

    Google Scholar 

  108. T. Rivers, J. Ketchum, A. Indares, and A. Hynes, “The high-pressure belt in the Grenville Province: architecture, timing, and exhumation,” Can. J. Earth Sci. 39, 867–893 (2002).

    Google Scholar 

  109. T. Rivers, J. Martignole, C. F. Gower, and A. Davidson, “New tectonic divisions of the Grenville Province, Southeast Canadian Shield,” Tectonics 8, 63–84 (1989).

    Google Scholar 

  110. I. S. Sanders, “Plagioclase breakdown and regeneration reactions in Grenville kyanite eclogite at Glenelg, Scotland,” Contrib. Mineral. Petrol. 98, 33–39 (1988).

    Google Scholar 

  111. I. S. Sanders, P. W. C. Van Calsteren, and C. J. Hawkesworth, “A Grenville Sm-Nd age for the Glenelg eclogite in Northwest Scotland,” Nature 312, 439–440 (1984).

    Google Scholar 

  112. M. Sandiford, “Horizontal structures in granulite terrane: A record of mountain building or mountain collapse?” Geology 17, 449–452 (1989).

    Google Scholar 

  113. G. Skridlaite, J. Wiszniewska, and J.-C. Duchesne, “Ferro-potassic A-type granites and related rocks in NE Poland and S Lithuania: west of the East European Craton,” Precam. Res. 124, 305–326 (2003).

    Google Scholar 

  114. J. S. Scoates, D. H. Lindsley, and B. R. Frost, “Magmatic and structural evolution of an anorthositic magma chamber: the Poe Mountain intrusion, Laramie anorthosite complex, Wyoming,” Can. Mineral. 48, 851–885 (2010).

    Google Scholar 

  115. E. V. Sharkov, “Middle Proterozoic anorthosite-rapakivi granite complexes: an example of within-plate magmatism in abnormally thick crust: evidence from the East European Craton,” Precam. Res. 183, 689–700 (2010).

    Google Scholar 

  116. U. Söberlund, F. A. Hellström, and S. L. Kamo, “Geochronology of high-pressure mafic granulite dykes in SW Sweden: Tracking the P-T-t path of metamorphism using Hf isotopes in zircon and baddeleyite,” J. Metamorphic Geol. 26, 539–560 (2008).

    Google Scholar 

  117. C. D. Storey, T. S. Brewer, and S. Temperley, “P-Tconditions of Grenville-age eclogite facies metamorphism and amphibolite facies retrogression of the Glenelg-Attadale Inlier, NW Scotland,” Geol. Mag. 142(5), 1–11 (2005).

    Google Scholar 

  118. R. P. Tollo, L. Corriveau, J. McLelland, and M. J. Bartholomew, “Introduction,” in Proterozoic Tectonic Evolution of the Grenville Orogen in North America (Geol. Soc. Amer. Memoir, 2004), Vol. 197, pp. 1–18.

    Google Scholar 

  119. A. B. Thompson and J. R. Ridley, “Pressure-Temperature-Time (P-T-t) histories of orogenic belts,” Phil. Trans. Roy. Soc. London A321, 27–45 (1987).

    Google Scholar 

  120. W. R. Van Schmus, J. C. Green, and H. C. Halls, “Geochronology of Keweenawan rocks of the Lake Superior region,” in Geology and Tectonics of the Lake Superior Basin, Ed. by J. Wold and W.J. Hinze, Geol. Soc. Amer. Memoir 156, 165–172 (1982).

    Google Scholar 

  121. J. D. Vervoort, K. Wirth, B. Kennedy, T. Sandland, and K. S. Harpp, “The magmatic evolution of the Midcontinent Rift: new geochronologic and geochemical evidence from felsic magmatism,” Precam. Res. 157(1/4), 235–268 (2007).

    Google Scholar 

  122. P. J. Voice, M. Kowalewski, and K. A. Eriksson, “Quantifying the timing and rate of crustal evolution: global compilation of radiometrically dated detrital zircon grains,” J. Geol. 119, 109–126 (2011).

    Google Scholar 

  123. R. A. Volkert, C. A. Johnson, and A. V. Tamashausky, “Mesoproterozoic Graphite Deposits, New Jersey Highlands: geologic and stable isotopic evidence for possible algal origins,” Can. J. Earth Sci. 37, 1665–1675 (2000).

    Google Scholar 

  124. X.-D. Wang and A. Lindh, “Temperature-pressure investigation of the southern part of the Southwest Swedish granulite region”, Eur. J. Mineral. 8, 51–67 (1996).

    Google Scholar 

  125. R. J. Wardle, T. Rivers, C. F. Gower, G. A. G. Nunn, and A. Thomas, “The northeastern Grenville Province: new insights,” in The Grenville Province, Ed. by J. M. Moore, A. Davidson, and A. J. Baer, Geol. Ass. Canada Spec. Paper 31, 13–29 (1986).

    Google Scholar 

  126. R. A. Wiebe, “Anorthositic magmas and the origin of Proterozoic anorthosite massifs,” Nature 286, 564–567 (1980).

    Google Scholar 

  127. N. Wodichka, J. W. F. Ketchum, and R. A. Jamieson, “Grenvillian metamorphism of monocyclic rocks, Georgian Bay, Ontario, Canada: implications for convergence history,” Can. Mineral. 38, 471–510 (2000).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Mints.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mints, M.V. Tectonics and geodynamics of granulite-gneiss complexes in the East European Craton. Geotecton. 48, 496–522 (2014). https://doi.org/10.1134/S0016852114060089

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016852114060089

Keywords

Navigation