Skip to main content
Log in

Granitic protrusions in the structure of intraplate reactivation, southern Mongolia

  • Published:
Geotectonics Aims and scope

Abstract

The paper describes tectonic assemblies determining structure and kinematics of the plate evolution in the eastern segment of the Gobi Altay and Gobi Tien Shan intraplate reactivation zones in southern Mongolia. These zones are characterized by deformations corresponding to a 3D brittle-ductile shear flow. The structural and compositional reworking is most strikingly expressed in certain varieties of granites, which form specific geostructures called crystalline protrusions. The internal structure of protrusive bodies is distinguished by fragmentation differing in scale, intense brecciation, cataclasis, and structural-mineral reworking of rocks. Taken together, these phenomena facilitate the tectonic mobility of rock masses under low-temperature and hypabyssal conditions and maintain 3D tectonic flow in basement rocks. The tectonic style of the region and its evolution are predetermined by the 3D flow of granitoids in the crystalline basement, which is related to the joint action of various mechanisms discussed in this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. G. Areshev, V. P. Gavrilov, Ch. L. Dong, et al., Geology and Petroleum Potential of Basement at the Sunda Shelf (Neft i Gaz, Moscow, 1997) [in Russian].

    Google Scholar 

  2. R. A. Burwash, “Basement,” in The Encyclopedia of Structural Geology and Plate Tectonics, Ed. by C. K. Seyfert (Van Nostrand Reinhold, New York, 1987; Moscow: Mir, 1991), Vol. 3, pp. 265–269.

    Google Scholar 

  3. Geological Formations of Mongolia. Proceedings of Joint Russian-Mongolian Research Geological Expedition (Shag, Moscow, 1995), Issue 55 [in Russian].

  4. Geological Map of the Mongolian People Republic on a Scale of 1: 200000. Map Sheet L-48-XXX (Ministry Geol. USSR, Moscow, 1989) [in Russian].

  5. Glossary of Geology (Nedra, Moscow, 1973), Vol. 2 [in Russian].

  6. Gobi Altay Earthquake, Ed. by N. A. Florensov and V. P. Solonenko (Acad. Sci. USSR, Moscow, 1963) [in Russian].

    Google Scholar 

  7. B. Damdinzhav, A. Delgersaikhan, and Zh. Badamgarav, Geological Map of Mongolia on a Scale 1: 200000. Map Sheet K-48-VIII (Ulaanbaatar, 1999).

    Google Scholar 

  8. E. V. Devyatkin, “Deformation of planation surface of western Mongolia over recent stage of tectonic evolution,” in Planation Surfaces (Inst. Earth’s Crust, Irkutsk, 1970), Vol. 2, pp. 32–40 [in Russian].

    Google Scholar 

  9. E. V. Devyatkin, “Geochronology of Cenozoic basalts in Mongolia and their relationships with neotectonic structures,” Stratigr. Geol. Correlation 12(2), 199–209 (2004).

    Google Scholar 

  10. L. P. Zonenshain, M. V. Durante, N. G. Markova, et al., “Main geological features and evolution of the adjacent parts of Mongolian and Gobi Altay,” in Stratigraphy and Tectonics of Mongolian People Republic (Nauka, Moscow, 1970), pp. 114–131 [in Russian].

    Google Scholar 

  11. V. I. Kovalenko and V. V. Yarmolyuk, Evolution of Geological Processes and Metallogeny of Mongolia (Nauka, Moscow, 1990) [in Russian].

    Google Scholar 

  12. M. I. Kuz’min, V. V. Yarmolyuk, and V. A. Kravchinsky, “Phanerozoic within-plate magmatism of North Asia: Absolute paleogeographic reconstructions of the African large low-shear-velocity province,” Geotectonics 45(6), 415–438 (2011).

    Article  Google Scholar 

  13. E. V. Lavrushina and E. S. Przhiyalgovsky, “Systems of platy jointing and fracturing in Mesozoic granitoid massifs of central Mongolia,” in Proceedings of the 43rd Tectonic Conference: Tectonics and Geodynamics of Phanerozoic Foldbelts and Platforms (GEOS, Moscow, 2010), Vol. 1, pp. 401–405 [in Russian].

    Google Scholar 

  14. M. G. Leonov, “Posthumous rheid tectonics of continental basement,” Geotectonics 31(3), 169–185 (1997).

    Google Scholar 

  15. M. G. Leonov, Tectonics of Consolidated Crust (Nauka, Moscow, 2008) [in Russian].

    Google Scholar 

  16. M. G. Leonov, “Within-plate zones of concentrated deformation: tectonic structure and evolution,” Geotectonics 46(6), 389–411 (2012).

    Article  Google Scholar 

  17. M. G. Leonov, Yu. A. Morozov, and A. V. Nikitin, “The posthumous tectonics and mechanism of exhumation of granitic plutons: the case of the Transbaikal region and the Tien Shan,” Geotectonics 42(2), 81–104 (2008).

    Article  Google Scholar 

  18. M. G. Leonov, Yu. G. Tsekhovsky, E. S. Przhiyalgovsky, A. V. Poleshchuk, and E. V. Lavrushina, “Polygenic nature of granite clastites: Communication 1. Exogenic and tectonic postmagmatic disintegration of granite massifs,” Lithol. Mineral. Res. (1), 81–102 (2014).

    Google Scholar 

  19. E. N. Lishnevsky, V. K. Shevchenko, and V. V. Bronguleev, “Geological indications and problem of postmagmatic rising of granites,” Geotektonika 10(5), 93–100 (1976).

    Google Scholar 

  20. M. P. Lobanov, V. I. Sizykh, A. V. Sintsov, and T. L. Strelyuk, “Endogenic clastites: a new mechanochemical type of pseudosedimentary rocks related to tectonic deformations: the Baikal and Nepa megaarches,” Dokl. Akad. Nauk SSSR 319(5), 1178–1182 (1991).

    Google Scholar 

  21. Mesozoic Lake Basins of Mongolia (Nauka, Leningrad, 1982) [in Russian].

  22. M. S. Nagibina, “Sedimentary and volcanic-sedimentary formations of the orogenic (continental) stage of evolution: group of molasses formations,” in Geological Formations of Mongolia (Shag, Moscow, 1995), pp. 39–63 [in Russian].

    Google Scholar 

  23. M. A. Osipov, Contraction of Granitoids and Endogenic Mineral Formation (Nauka, Moscow, 1974) [in Russian].

    Google Scholar 

  24. N. D. Pavlov, “Tectonic caisson effect and problem of formation of fractured reservoir and super-reservoir rocks in subsalt sequences of the Pericaspian Basin,” Geol., Geofiz., Razrabotka Neft. Mestorozhd., No. 2, 7–14 (1992).

    Google Scholar 

  25. A. V. Parfeevets and V. A. San’kov, “Late Cenozoic fields of the tectonic stresses in western and central Mongolia,” Izv. Phys. Solid Earth 46(5), 367–378 (2010).

    Article  Google Scholar 

  26. E. I. Patalakha, “Differential mobility of jointly deformed heterogeneous geological bodies, its causes and effects: viscosity inversion,” Geotektonika 5(4), 15–20 (1971).

    Google Scholar 

  27. E. S. Przhiyalgovsky and M. G. Leonov, “Structures, mechanisms, and prerequisites of the posthumous rheid deformations in granites,” in Proceedings of the 3rd All-Russia Tectonophysical Conference: Tectonics and Urgent Issues in Geosciences (Inst. Phys. Earth, Moscow, 2012), Vol. 2, pp. 39–42 [in Russian].

    Google Scholar 

  28. E. S. Przhiyalgovsky, E. V. Lavrushina, and A. V. Nikitin, “Structures of quasiplastic deformations in granitoids of the Zuramtay massif (Gobi, southern Mongolia),” in Proceedings of the 43rd Tectonic Conference: Tectonics and Geodynamics of Phanerozoic Foldbelts and Platforms (GEOS, Moscow, 2010), Vol. 2, pp. 169–173 [in Russian].

    Google Scholar 

  29. E. S. Przhiyalgovsky, M. G. Leonov, and E. V. Lavrushina, “Granite protrusions in zones of intraplate activization of South Mongolia,” Dokl. Earth Sci. 440(2), 1359–1362 (2011).

    Article  Google Scholar 

  30. E. S. Przhiyalgovsky, T. F. Shcherbakova, E. V. Lavrushina, A. T. Savichev, and N. V. Gor’kova, “Manifestation of quasiplastic deformation of granites in the Tanyn massif (Gobi Altay, southern Mongolia) at microlevel,” in Proceedings of Conference: Geodynamic Evolution of the Central Asian Mobile Belt (from Ocean to Continent) (Irkutsk, 2010), Vol. 2, issue 8, pp. 43–44 [in Russian].

    Google Scholar 

  31. M. Reiner, Deformation, Strain, and Flow: An Elementary Introduction to Rheology (Lewis, London, 1960).

    Google Scholar 

  32. V. S. Samoilov and M. M. Arakelyants, “Late Mesozoic magmatism of the Gobi Altay and its structural position,” Geotektonika 23(3), 97–104 (1989).

    Google Scholar 

  33. Z. A. Svarichevskaya and N. V. Skublova, “Nature of Island Mountains in Central Kazakhstan,” in Structural Geomorphology of Mountainous Countries (Ilim, Frunze, 1973), pp. 74–75 [in Russian].

    Google Scholar 

  34. I. M. Simanovich, Quartz of Sandy Rocks (Nauka, Moscow, 1978) [in Russian].

    Google Scholar 

  35. Handbook Physical Constants, Ed. by P. Clarke, Jr. (Geol. Soc. Amer. Mem., Vol. 97, 1966; Mir, Moscow, 1969).

    Google Scholar 

  36. Types of Magmas and Their Sources in the Earth’s History, Ed. by O. A. Bogatikov and V. I. Kovalenko (IGEM RAN, Moscow, 2006), Vol. 2 [in Russian].

    Google Scholar 

  37. Heinke, G., Tribochemistry, (Hanser Press, Munich, 1984; Mir, Moscow, 1987).

    Google Scholar 

  38. Yu. G. Tsekhovsky, “Lithogenesis in zones of reactivation of tectonic regime,” in Sedimentary Basins: Research Methods, Structure and Evolution (Nauchnyi mir, Moscow, 2004), pp. 245–266 [in Russian].

    Google Scholar 

  39. Yu. G. Tsekhovsky, M. G. Leonov, A. V. Nikitin, et al., “Pseudosecondary clastic rocks of the Dzuramtay massif (southern Mongolia),” Lithol. Mineral. Res. 44(3), 284–297 (2009).

    Article  Google Scholar 

  40. V. F. Shuvalov, Mesozoic Straigraphy of Central Mongolia. Stratigraphy of Mesozoic Rocks in Mongolia (Nauka, Leningrad, 1975) [in Russian].

    Google Scholar 

  41. V. V. Yarmolyuk, “Late Paleozoic rifting and batholith formation in Central Asia,” in Proceedings of Conference: Geodynamic Evolution of the Central Asian Mobile Belt (from Ocean to Continent) (Irkutsk, 2010), Vol. 2, issue 8, pp. 158–159 [in Russian].

    Google Scholar 

  42. V. V. Yarmolyuk, V. I. Kovalenko, E. B. Sal’nikova, et al., “Geochronology of igneous rocks and formation of the Late Paleozoic South Mongolian active margin of the Siberian continent,” Stratigr. Geol. Correlation 16(2), 162–182 (2008).

    Article  Google Scholar 

  43. C. S. Cambell, “Rapid granular flow,” Annu. Rev. Fluid Mech., No. 22, 57–92 (1990).

    Google Scholar 

  44. S. W. Carey, “The rheid concept in geotectonics,” Bull. Geol. Soc. Austr. 1, 67–117 (1954).

    Article  Google Scholar 

  45. H. Cloos, Pluton und Ihre Stellung im Rahmen der Krustenbewegungen (16th Int. Geol. Congress, Washington, DC, 1936).

    Google Scholar 

  46. W. D. Cunningham, “Tectonic setting and structural evolution of the Late Cenozoic Gobi Altai Orogen,” Geol. Soc. London, Spec. Publ. 338, 361–387 (2010).

    Article  Google Scholar 

  47. W. D. Cunningham, B. F. Windley, D. Dorjnamjaa, et al., “Late Cenozoic transpression in southwestern Mongolia and the Gobi Altai-Tien Shan connection,” Earth Planet. Sci. Lett. 140, 67–82 (1996).

    Article  Google Scholar 

  48. G. Dejidmaa and G. Badarch, “Summary of pre-accretionary and accretionary metallogenic belts of Mongolia,” in Geodynamics and Metallogeny of Mongolia with Special Emphasis on Copper and Gold Deposits, Ed. by R. Seltmann, O. Gerel, and D. Kirvin (CERCAMS, London, 2005), pp. 25–30.

    Google Scholar 

  49. P.-C. Graciansky, “Le problem des “cóloured melanges” à propos de Formation chaotiques associées aux ophiolites de Licie occidentale (Turquie),” Rev. Géogr. Phys. et Géol. Dyn. 15(Fasc. 5), 555–556 (1973).

    Google Scholar 

  50. B. M. Jahn, F. Wu, and B. Chen, “Granitoids of the Central Asian orogenic belt and continental growth in the Phanerozoic,” Trans. Roy. Soc. Edinburgh: Earth Sciences 91, 181–193 (2000).

    Article  Google Scholar 

  51. C. Passchier and R. Trouw, Microtectonics (Springer, Berlin, 1996).

    Google Scholar 

  52. O. Tomurtogoo, “Tectonics and evolution of Mongolia,” in Geodynamics and Metallogeny of Mongolia with Special Emphasis on Copper and Gold Deposits, Ed. by R. Seltmann, O. Gerel, and D. Kirvin (CERCAMS, London, 2005), pp. 5–14.

    Google Scholar 

  53. J. Tullis, H. Stunitz, C. Teyssier, et al., “Deformation microstructures in quartzo-feldspathic rocks,” J. Virtual Explorer, Electronic Edition 2, 15–16 (2000).

    Google Scholar 

  54. N. H. Woodcock and K. Mort, “Classification of fault breccias and related fault rocks,” Geol. Mag. 145(3), 435–440 (2008).

    Article  Google Scholar 

  55. H. M. Yaeger and S. R. Nagel, “The physics of granular materials,” Phys. Today, April, 32–38 (1996).

    Google Scholar 

  56. C. Vita-Finzi, “Pie De Palo, Argentina: a Clastic Diapir,” Geomorphology 104, 317–322 (2009).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. S. Przhiyalgovsky.

Additional information

Original Russian Text © E.S. Przhiyalgovsky, M.G. Leonov, E.V. Lavrushina, 2014, published in Geotektonika, 2014, Vol. 48, No. 3, pp. 50–77.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Przhiyalgovsky, E.S., Leonov, M.G. & Lavrushina, E.V. Granitic protrusions in the structure of intraplate reactivation, southern Mongolia. Geotecton. 48, 207–231 (2014). https://doi.org/10.1134/S0016852114030054

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016852114030054

Keywords

Navigation