Skip to main content
Log in

Solar polar magnetic field

  • Published:
Geomagnetism and Aeronomy Aims and scope Submit manuscript

Abstract

The solar polar magnetic field has attracted the attention of researchers since the polar magnetic field reversal was revealed in the middle of the last century (Babcock and Livingston, 1958). The polar magnetic field has regularly reversed because the magnetic flux is transported from the sunspot formation zone owing to differential rotation, meridional circulation, and turbulent diffusion. However, modeling of these processes leads to ambiguous conclusions, as a result of which it is sometimes unclear whether a transport model is actual. Thus, according to the last Hinode data, the problem of a standard transport model (Shiota et al., 2012) consists in that a decrease in the polar magnetic flux in the Southern Hemisphere lags behind such a decrease in the flux in the Northern Hemisphere (from 2008 to June 2012). On the other hand, Svalgaard and Kamide (2012) consider that the asymmetry in the sign reversal simply results from the asymmetry in the emerging flux in the sunspot formation region. A detailed study of the polar magnetic flux evolution according to the Solar Dynamics Observatory (SDO) data for May 2010–December 2012 is illustrated in the present work. Helioseismic & Magnetic Imager (HMI) magnetic data in the form of a magnetic field component along the line of sight (the time resolution is 720 s) are used here. The magnetic fluxes in sunspot formation regions and at high latitudes have been compared.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Babcock, H.W. and Livingston, W.C., Changes in the Sun’s polar magnetic field, Science, 1958, vol. 127, p. 1058.

    Article  Google Scholar 

  • Babcock, H.D., The Sun’s polar magnetic field, Astrophys. J. Lett., 1959, vol. 130, pp. 364–365.

    Article  Google Scholar 

  • Benevolenskaya, E.E., Impulses of activity and the Solar cycle, Sol. Phys., 2003, vol. 216, pp. 325–341.

    Article  Google Scholar 

  • Benevolenskaya, E.E., Polar magnetic flux on the Sun in 1996–2003 from SOHO/MDI data, Astron. Astrophys., 2004, vol. 428, pp. L5–L8.

    Article  Google Scholar 

  • Benevolenskaya, E.E., Astron. Nachr., 2010, vol. 331, pp. 63–72.

    Article  Google Scholar 

  • Dikpati, M., Polar field puzzle: Solutions from flux-transport dynamo and surface-transport models, Astrophys. J. Lett., 2011, vol. 733, no. 2, p. 90.

    Article  Google Scholar 

  • Jiang, J., Cameron, R.H., Schmitt, D., and Schüssler, M., Can surface flux transport account for the weak polar field in cycle 23?, Space Sci. Rev., 2011.

    Google Scholar 

  • Leighton, R.B., Transport of magnetic fields on the Sun, Astrophys. J. Lett., 1964, vol. 140, pp. 1547–1562.

    Article  Google Scholar 

  • Leighton, R.B., A magneto-kinematic model of the solar cycle, Astrophys. J. Lett., 1969, vol. 156, pp. 1–26.

    Article  Google Scholar 

  • Lin, H., Varsik, J., and Zirin, H., High-resolution observations of the polar magnetic fields of the Sun, Sol. Phys., 1994, vol. 155, pp. 243–256.

    Article  Google Scholar 

  • Livshits, I.M. and Obridko, V.N., Variations of the dipole magnetic moment of the Sun during the solar activity cycle, Astron. Rep., 2006, vol. 50, no. 11, pp. 926–935.

    Article  Google Scholar 

  • Okunev, O.V. and Kneer, F., On the structure of polar faculae on the Sun, Astron. Astrophys., 2004, vol. 425, pp. 321–331.

    Article  Google Scholar 

  • Pesnell W.D., Thompson, B.J., and Chamberlin, P.C., The Solar Dynamics Observatory (SDO), Sol. Phys., 2012, vol. 275, pp. 3–15.

    Article  Google Scholar 

  • Pucci, S., Poletto, G., Sterling, A.C., and Romoli, M., Solar polar X-ray jets and multiple bright points: Evidence for sympathetic activity, Astrophys. J. Lett., vol. 745, no. 2, p. L31.

  • Savcheva, A. and Cirtain, J.E., Deluca, E.E., Lundquis, L.L., Golub, L., Weber, M., Shimojo, M. Shibasaki, K., Sakao, T., and Narukage, N., Study of polar jet parameters based on Hinode XRT observations, Obs. Publ. Astron. Soc. Japan, 2007, vol. 59, pp. S771–S778.

    Google Scholar 

  • Scherrer, P.H., Schou, J., Bush, R.I., Kosovichev, A.G., Bogard, R.S., Hoeksema, J.T., Liu, Y., Duvall, Jr.T.L., Zhao, J., Title, A.M., Schrijver, C.J., Tarbell, T.D., and Tomczyk, S., The Helioseismic and 7 Magnetic Imager (HMI) Investigation for the Solar Dynamics Observatory (SDO) Sol. Phys., 2012, vol. 275, pp. 207–227.

    Article  Google Scholar 

  • Severnyi, A.B., The nature of solar magnetic fields (The fine structure of the field), Sov. Astron. Lett., 1965, no. 9, pp. 171–182.

    Google Scholar 

  • Shiota, D., Tsuneta, S., Shimojo, M., Sako, N., Orozco Suarez, D., and Ishikawa, R., Polar field reversal observations with hinode, Astrophys. J. Lett., 2012, vol. 753, p. 157.

    Article  Google Scholar 

  • Svalgaard, L. Cliver, E.W., and Kamide, Y., Sunspot cycle 24: Smallest cycle in 100 years? ASP Conf. Ser., 2005, vol. 346, p. 401.

    Google Scholar 

  • Svalgaard, L. and Kamide, Y., Asymmetric solar polar field reversals, Astrophys. J. Lett., 2012, vol. 763, p. 6.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Benevolenskaya, E.E. Solar polar magnetic field. Geomagn. Aeron. 53, 891–895 (2013). https://doi.org/10.1134/S0016793213070037

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016793213070037

Keywords

Navigation