Skip to main content
Log in

Particle energy fluxes in an unstable plasma with vortex structures in an inhomogeneous geomagnetic field in the topside ionosphere

  • Published:
Geomagnetism and Aeronomy Aims and scope Submit manuscript

Abstract

Plasma inhomogeneities extending along geomagnetic field lines in the ionosphere and magnetosphere can have a vortex structure. Electromagnetic waves can propagate in plasma inhomogeneities in the waveguide channel mode. It has been indicated that energy and particle fluxes related to the development of small-scale electrostatic turbulence in a magnetized plasma with an unstable electron component promotes an increase in plasma density gradients in the walls of waveguide channels and an enhancement in plasma vortices. At low L shells in the region of the geomagnetic equator, the development of plasma electrostatic instability and the damping of drifting plasma vortices in the inhomogeneous geomagnetic field in the topside ionosphere can be the main mechanism by which large-scale (∼1000 km) regions with a decreased plasma density are formed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aburjania, G.D., Samoorganizatsiya nelineinykh vikhrevykh struktur i vikhrevoi turbulentnosti v dispergiruyushchikh sredakh (Self-Organization of Nonlinear Vortex Structures and Vortex Turbulence in Dispersing Mediums), Lominadze, G.D., Ed., KomKniga, 2006.

  • Artsimovich, L.A. and Sagdeev, R.Z., Fizika plazmy dlya fizikov (Plasma Physics for Physicists), Moscow: Atomizdat, 1979.

    Google Scholar 

  • Erokhin, N.S. and Mikhailovskaya, L.A., Certain Features of Exactly Solvable Models of Interaction between Waves and an Inhomogeneous Medium, Trudy mezhdunar. konferentsii MSS-04 “Transformatsiya voln, kogerentnye struktury i turbulentnost” (Proc. Int. Conference MSS-04 “Wave Transformation, Coherent Structures, and Turbulence”), Erokhin, N.S., Kogan, E.Ya., Balebanov, V.M., Artekhi, S.N., Zol’nikova, I.N., and Mikhailovskaya, L.A., Eds., Moscow: Izd. URSS, 2004, pp. 42–47.

    Google Scholar 

  • Galeev, A.A., Kennel, C.F., Krasnoselskikh, V.V., and Lobzin, V.V., The Role of Whistler Oscillations in the Formation of the Structure of High Mach Number Collisionless Shock, ESA SP-285, 1988, vol. 1, pp. 165–172.

    Google Scholar 

  • Gdalevich, G.L., Izhovkina, N.I., Ozerov, V.D., Bankov, N., Chapkanov, S., and Todorieva, L., Plasma Inhomogeneities in and Unstable Topside Ionosphere according to the Intercosmos-Bulgaria-1300 Satellite Data, Kosm. Issled., 2006, vol. 44, no. 5, pp. 438–443.

    Google Scholar 

  • Gdalevich, G.L., Izhovkina, N.I., and Ozerov, V.D., Structure of the Plasma Cavern in the Ionospheric F Region at the Geomagnetic Equator according to the COS-MOS-900 Satellite Data, Kosm. Issled., 2003, vol. 41, no. 6, pp. 596–606.

    Google Scholar 

  • Haerendel, G., Bauer, H., Cakir, S., Fopple, H., Rieger, E., and Valenzuela, A., Colored Bubbles: An Experiment for Triggering Equatorial Spread-F, in Active Experiments in Space, Eur. Space Agency Spec. Publ. ESA SP-195, 1983, p. 295.

  • Haerendel, G., Results from Barium Cloud Releases in the Ionosphere and Magnetosphere, Space Res., 1973, vol. 13, pp. 601–617.

    Google Scholar 

  • Izhovkina, N.I., Afonin, V.V., Karpachev, A.T., Prutensky, I.S., and Pulinets, S.A., Structure of the Ionospheric Trough for Different Geomagnetic Disturbance Levels and the Sources of Plasma Heating in the Upper Dayside Ionosphere, Geomagn. Aeron., 1999, vol. 39, no. 4, pp. 39–43 [Geomagn. Aeron., 1999, vol. 39, pp. 438–442].

    Google Scholar 

  • Izhovkina, N.I., Karpachev, A.T., Prutensky, I.S., Pulinets, S.A., Klos, Z., and Rothkaehl, H., Heating and Decay of Irregularities in the Electrostatically Unstable Plasma of the Upper Ionosphere, Geomagn. Aeron., 2001, vol. 41, no. 4, pp. 491–494 [Geomagn. Aeron., 2001, vol. 41, pp. 469–473].

    Google Scholar 

  • Izhovkina, N.I., Prutensky, I.S., Pulinets, S.A., Erokhin, N.S., Mikhailovskaya, L.A., Klos, Z., and Rothkaehl, Kh., Electromagnetic Waves and Electrostatic Oscillations in and Inhomogeneous Plasma Structure at the Geomagnetic Equator, Geomagn. Aeron., 2008, vol. 48, no. 5, pp. 660–671 [Geomagn. Aeron., 2008, vol. 48, pp. 631–641].

    Article  Google Scholar 

  • Kelley, M.C. and Livingston, R., Barium Cloud Striations Revisited, J. Geophys. Res., 2003, vol. 108A, p. 1044.

    Article  Google Scholar 

  • Kennel, C.F. and Engelman, F., Velocity Space Diffusion from Week Plasma Turbulence, Phys. Fluids, 1966, vol. 9, no. 12, pp. 2377–2388.

    Article  Google Scholar 

  • Kennel, C.F. and Petchek, H.E., Limit on Stably Trapped Particle Fluxes, J. Geophys. Res., 1966, vol. 71, no. 1, pp. 1–28.

    Google Scholar 

  • Kennel, C.F., Low Frequency Whistler Mode, Phys. Fluids, 1966, vol. 9, no. 11, pp. 2190–2209.

    Article  Google Scholar 

  • Moiseev, S.S., Sagdeev, R.Z., Tur, A.V., and Yanovskii, V.V., On Frozen-In Integrals and Lagrange Invariants in a Hydrodynamic Approximation, Zh. Eksp. Teor. Fiz., 1982, vol. 83, no. 1(7), pp. 215–226.

    Google Scholar 

  • Moiseev, S.S., Sagdeev, R.Z., Tur, A.V., and Yanovskii, V.V., Theory of Origination of Large-Scale Structures in Hydrodynamic Turbulence, Zh. Eksp. Teor. Fiz., 1983, vol. 85, no. 6(12), pp. 1979–1987.

    Google Scholar 

  • Narcisi, R.S. and Szusczewicz, E.P., Direct Measurements of Electron Density, Temperature and Ion Composition in an Equatorial Spread-F Ionosphere, J. Atmos. Terr. Phys., 1981, vol. 43, no. 5/6, pp. 463–471.

    Article  Google Scholar 

  • Nezlin, M.V. and Chernikov, G.P., Analogy of Drift Vortices in Plasma and Geophysical Hydrodynamics, Fiz. Plazmy, 1995, vol. 21, no. 11, pp. 975–999.

    Google Scholar 

  • Roederer, J.G., Dynamics of Geomagnetically Trapped Radiation (Springer-Verlag, Berlin, 1970). Translated under the title Dinamika radiatsii, zakhvachennoi geomagnitnym polem, Moscow: Mir, 1972.

    Google Scholar 

  • Shafranov, V.D., Electromagnetic Waves in Plasma, Vopr. Teor. Plazmy, 1973, vol. 3, pp. 3–141.

    Google Scholar 

  • Tanaka, Y. and Hayagawa, M., On the Propagation of Day Time Whistlers at Low Latitudes, J. Geophys. Res., 1985, vol. 90, no. 4A, pp. 3457–3464.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © N.I. Izhovkina, 2010, published in Geomagnetizm i Aeronomiya, 2010, Vol. 50, No. 6, pp. 817–824.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Izhovkina, N.I. Particle energy fluxes in an unstable plasma with vortex structures in an inhomogeneous geomagnetic field in the topside ionosphere. Geomagn. Aeron. 50, 788–795 (2010). https://doi.org/10.1134/S0016793210060101

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016793210060101

Keywords

Navigation