Skip to main content
Log in

Solar proton events and evolution of cyclones in the North Atlantic

Geomagnetism and Aeronomy Aims and scope Submit manuscript

Abstract

The influence of solar proton events (SPEs) with particle energies > 90 MeV on the evolution of extratropical cyclones in the North Atlantic is studied. A substantial intensification of the regeneration (secondary deepening) of cyclones near the southeastern Greenland coast after the SPE onset is detected. It is shown that the observed deepening of cyclones is caused by intensified advection of cold when the zone of the Arctic front in the region of the Greenland coast is approached. The results allow us to assume that SPEs with the above particle energies cause substantial changes in the structure of the thermobaric field of the subpolar and high-latitude troposphere, which form more favorable conditions for the regeneration of cyclones. In this case the role of the Arctic vertical frontal zone is apparently important. Temperature field changes can be caused by the radiation effects of variations in the upper cloudiness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  1. Catalog of Solar Proton Events 1987–1996, Ed. by Yu. I. Logachev (Moscow Univ. Press, Moscow, 1998).

    Google Scholar 

  2. Catalog of Solar Proton Events 1980–1986, Ed. by Yu. I. Logachev (Mezhved. Geofiz. Komit. Akad. Nauk SSSR-MTsD B, Moscow, 1990) [in Russian].

    Google Scholar 

  3. L. I. Dorman, The Experimental and Theoretical Principles of the Astrophysics of Cosmic Rays (Nauka, Moscow, 1975) [in Russian].

    Google Scholar 

  4. I. A. Gorchakova, “Calculations of Thermal Radiation Fluxes during Cirri,” in Radiation Properties of Cirri, Ed. by E. M. Feigel’son (Nauka, Moscow, 1989), pp. 209–214 [in Russian].

    Google Scholar 

  5. I. A. Gorchakova, “Effect of Cirri on Thermal Radiation Fluxes,” Izv. Akad. Nauk SSSR, Fiz. Atmos. Okeana 27(9), 983–987 (1991).

    Google Scholar 

  6. R. G. Harrison and D. B. Stephenson, “Empirical Evidence for a Nonlinear Effect of Galactic Cosmic Rays on Clouds,” Proc. R. Soc. London, Ser. A 462, 1221–1233 (2006).

    Article  Google Scholar 

  7. E. Kalnay, M. Kanamitsu, R. Kistler, et al., “The NCEP/NCAR 40-Year Reanalysis Project,” Bull. Am. Meteorol. Soc. 77, 437–472 (1996).

    Article  Google Scholar 

  8. S. P. Khromov and M. A. Petrosyants, Meteorology and Climatology (Mosk. Gos. Univ., Moscow, 1994) [in Russian].

    Google Scholar 

  9. N. J. Macdonald and W. O. Roberts, “Further Evidence of a Solar Corpuscular Influence on a Large-Scale Circulation at 300 mbar,” J. Geophys. Res. 65, 529–534 (1960).

    Article  Google Scholar 

  10. R. Markson and M. Muir, “Solar Wind Control of the Earth’s Electric Field,” Science 208, 979–990 (1980).

    Article  Google Scholar 

  11. L. T. Matveev, Theory of General Circulation of the Earth’s Atmosphere and Climate (Gidrometeoizdat, Leningrad, 1991) [in Russian].

    Google Scholar 

  12. E. R. Mustel’, “Solar Corpuscular Fluxes and Their Effect on the Earth’s Atmosphere,” Nauch. Inform. Astron. Sov. Akad. Nauk SSSR, No. 10, 98–175 (1968).

  13. E. P. Ney, “Cosmic Radiation and the Weather,” Nature 183, 451–452 (1959).

    Article  Google Scholar 

  14. G. A. Panofski and G. V. Brier, Some Applications of Statistics to Meteorology (Pennsylvania State Univ., Pittsburg, 1968; Gidrometeoizdat, Leningrad, 1972).

    Google Scholar 

  15. M. I. Pudovkin and S. V. Veretenenko, “Cloudiness Decreases Associated with Forbush-Decreases of Galactic Cosmic Rays,” J. Atmos. Terr. Phys. 57, 1349–1355 (1995).

    Article  Google Scholar 

  16. M. I. Pudovkin and S. V. Veretenenko, “Variations of the Cosmic Rays as One of the Possible Links between the Solar Activity and the Lower Atmosphere,” Adv. Space Res. 17(11), 161–164 (1996).

    Article  Google Scholar 

  17. M. I. Pudovkin and S. V. Veretenenko, “Variations in the Atmospheric Pressure Meridional Profile during Geomagnetic Disturbance,” Geomagn. Aeron. 32(1), 118–122 (1992).

    Google Scholar 

  18. W. O. Roberts and R. H. Olson, “Geomagnetic Storms and Wintertime 300-mb Through Development in the North Pacific-North America Area,” J. Atmos. Sci. 30, 135–140 (1973).

    Article  Google Scholar 

  19. C. J. E. Schuurmans and A. H. Oort, “A Statistical Study of Pressure Changes in the Troposphere and Lower Stratosphere after Strong Solar Flares,” Pure Appl. Geophys. 75, 233–246 (1969).

    Article  Google Scholar 

  20. M. A. Shea and D. F. Smart, “A World Grid of Calculated Cosmic Ray Vertical Cutoff Rigidities for 1980.0,” in Proceedings of the 18th International Cosmic Ray Conference, 1983, Vol. 3, pp. 415–418.

  21. Space Data (Nauka, Moscow, 1987) [in Russian].

  22. H. Svensmark, “Influence of Cosmic Rays on Earth’s Climate,” Phys. Rev. Lett. 81(22), 5027–5029 (1998).

    Article  Google Scholar 

  23. P. Thejll, Calculation of Relative Vorticity, and the Vorticity Area Index from NCEP Reanalysis Data, (Danish Meteorol. Inst. Tech. Rep., 02-26, Copenhagen, 2002).

  24. B. A. Tinsley and G. W. Deen, “Apparent Tropospheric Response to MeV-GeV Particle Flux Variations: A Connection via Electrofreezing of Supercooled Water in High-Level Clouds?,” J. Geophys. Res. 96, 22 283–22 296 (1991).

    Article  Google Scholar 

  25. B. A. Tinsley and F. Yu, “Atmospheric Ionization and Clouds as Links between Solar Activity and Climate,” in Solar Variability and Its Effects on the Earth’s Atmosphere and Climate System, Ed. by J. Pap et al. (AGU Press, Washington, 2004), pp. 321–339.

    Google Scholar 

  26. B. A. Tinsley, “Influence of Solar Wind on the Global Electric Current, and Inferred Effects on Cloud Microphysics, Temperature and Dynamics in the Troposphere,” Space Sci. Rev. 94, 231–258 (2000).

    Article  Google Scholar 

  27. B. A. Tinsley, “The Solar Cycle and the QBO Influences on the Latitude of Storm Tracks in the North Atlantic,” Geophys. Res. Lett. 15(5), 409–412 (1988).

    Article  Google Scholar 

  28. B. A. Tinsley, G. M. Brown, and P. H. Scherrer, “Solar Variability Influences on Weather and Climate: Possible Connection through Cosmic Ray Fluxes and Storm Intensification,” J. Geophys. Res. 94, 14783–14792 (1989).

    Google Scholar 

  29. M. Todd and D. Kniveton, “Changes of Cloud Cover Associated with Forbush-Decreases of Galactic Cosmic Rays,” J. Geophys. Res. 106, 32031–32041 (2001).

    Google Scholar 

  30. S. V. Veretenenko and M. I. Pudovkin, “Variations of Total Cloudiness during Solar Cosmic Ray Events,” Geomagn. Aeron. 36(1), 153–156 (1996) [Geomagn. Aeron. 36 (1), 108–111 (1996)].

    Google Scholar 

  31. S. Veretenenko and P. Thejll, “Effects of Energetic Solar Proton Events on the Cyclone Development in the North Atlantic,” J. Atmos. Sol.-Terr. Phys. 66, 393–405 (2004).

    Article  Google Scholar 

  32. V. I. Vorob’ev, Synoptic Meteorology (Gidrometeoizdat, Leningrad, 1991) [in Russian].

    Google Scholar 

  33. J. M. Wilcox, P. H. Scherrer, L. Svalgaard, et al., “Influence of Solar Magnetic Sector Structure on Terrestrial Atmospheric Vorticity,” J. Atmos. Sci. 31(2), 581–588 (1974).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © S.V. Veretenenko, P. Tajll, 2008, published in Geomagnetizm i Aeronomiya, 2008, Vol. 48, No. 4, pp. 542–552.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Veretenenko, S.V., Tejll, P. Solar proton events and evolution of cyclones in the North Atlantic. Geomagn. Aeron. 48, 518–528 (2008). https://doi.org/10.1134/S0016793208040130

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016793208040130

PACS numbers

Navigation