Skip to main content
Log in

Isotope and geochemical characteristics of rocks from the Oshurkovo apatite-bearing massif, Western Transbaikalia

  • Published:
Geochemistry International Aims and scope Submit manuscript

Abstract

We present the results of a study on gabbroic rocks, syenites, pegmatites, carbonatites, and hydrothermal products of the Oshurkovo apatite-bearing massif. The results include Nd and Sr isotope ratios; the isotope compositions of carbon and oxygen in calcite; oxygen in apatite, magnetite, and silicate minerals (phlogopite, titanite, diopside, amphibole, K-feldspar, and quartz); sulfur in barite; and hydrogen in mica. The isotopic data are close to the EM-1 enriched mantle values and confirm a comagmatic relationship between the gabbros and carbonatites. The binary plot ɛNd vs. 87Sr/86Sr demonstrates strong differentiation between silicate rocks and carbonatites, as is the case with the other Late Mesozoic carbonatite occurrences of southwestern Transbaikalia. The oxygen isotope composition of all comagmatic phases also falls within the range of mantle values. A clear trend toward heavier oxygen and lighter carbon isotope compositions is observed in all successively emplaced phases, which is consistent with a trend defined by hydrothermal products formed under the influence of the parent magma chamber. Carbonates formed during the greenstone alteration of gabbroic rocks are enriched in the light oxygen isotope (δ18O from −2.8 to −7.3‰), suggesting a contribution of vadose water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. A. N. Kuznetsov, Mineralogy and Geochemistry of Apatite-Bearing Diorites (Southwestern Transbaikalia) (Nauka. SO RAN, Novosibirsk, 1980) [in Russian].

    Google Scholar 

  2. B. A. Litvinovsky, V. V. Yarmolyuk, A. N. Zanvilevich, M. G. Shadaev, A. V. Nikiforov, and V. F. Posokhov, “Sources of material and genesis of granitic pegmatites of the Oshurkovskii alkaline monzonite massif, Transbaikalia,” Geochem. Int. 43(12), 1149–1167 (2005).

    Google Scholar 

  3. B. A. Litvinovsky, B. Jahn, A. N. Zanvilevich, and M. G. Shadaev, “Crustal fractionation in the petrogenesis of an alkali monzodiorite-syenite series: the Oshurkovo plutonic sheeted complex, Transbaikalia, Russia,” Lithos 64, 97–130 (2002).

    Article  Google Scholar 

  4. A. V. Nikiforov, V. V. Yarmolyuk, and B. G. Pokrovskii, “Late Mesozoic carbonatites of Western Transbaikalia: mineralogical, chemical, and isotopic (O, C, S, and Sr) characteristics and relationships to alkaline magmatism,” Petrology 8(3), 278–301 (2000).

    Google Scholar 

  5. A. V. Nikiforov, V. V. Yarmolyuk, V. I. Kovalenko, V. G. Ivanov, and D. Z. Zhuravlev, “Late Mesozoic carbonatites of Western Transbaikalia: isotopic-geochemical characteristics and sources,” Petrology 10(2), 146–164 (2002).

    Google Scholar 

  6. A. N. Kuznetsov, “Sulfur isotope composition of pyrites from the Oshurkovo apatite-bearing diorite massif,” in Proceedings of 9th All-Union Symposium on Stable Isotopes in Geochemistry, Moscow, Russia, 1982 (Izd-vo AN SSSR, Moscow, 1982), pp. 461–465 [in Russian].

    Google Scholar 

  7. A. V. Ignat’ev and T. A. Velivetskaya, “Laser technique of sample preparation for stable isotope analysis,” in All-Russian Conference on Mass-Spectrometry and Its Applied Significance, Moscow, Russia, 2005 (Moscow, 2005) [in Russian].

    Google Scholar 

  8. V. M. Savatenkov, I. M. Morozova, and L. K. Levskii, “Behavior of the Sm-Nd, Rb-Sr, K-Ar, and U-Pb isotopic systems during alkaline metasomatism: fenites in the outer-contact zone of an ultramafic-alkaline intrusion,” Geochem. Int. 42(10), 899–920 (2004).

    Google Scholar 

  9. T. Chacko, D. R. Cole, and J. Horita, “Equilibrium oxygen, hydrogen and carbon isotope fractionation factor applicable to geological system,” in Stable Isotope Geochemistry, Rev. Mineral. Geochem. 43, 1–62 (2001).

    Article  Google Scholar 

  10. Y.-F. Zheng, “On calculations of oxygen isotope fractionation in minerals,” Episodes 22(2), 99–106 (1999).

    Google Scholar 

  11. G. V. Andreev, I. V. Gordienko, A. N. Kuznetsov, and A. I. Kravchenko, Apatite-Bearing Diorites of the Southwestern Transbaikalia (Buryatskoe knizhnoe izd-vo, Ulan-Ude, 1972) [in Russian].

    Google Scholar 

  12. S. V. Kostromin and F. I. Koval’skii, Geological-Structural Features of the Oshurkovo Apatite Deposit and its Economic Significance (Buryatskoe knizhnoe izd-vo, Ulan-Ude, 1966) [in Russian].

    Google Scholar 

  13. A. N. Kostromina, Apatite Mineralization and Genesis of the Oshurkovo Deposit (Novosibirsk, 1971) [in Russian].

    Google Scholar 

  14. F. L. Smirnov, “Oshurkovo apatite deposit,” Sov. Geol., No. 4, 79–90 (1971).

    Google Scholar 

  15. G. V. Polyakov, V. I. Bognibov, A. P. Krivenko, and P. A. Balykin, “Origin, modes of occurrence, and distribution of Oshurkovo-type apatite mineralization in southern Siberia,” Geol. Geofiz., No. 6, 19–26 (1980).

    Google Scholar 

  16. L. G. Kuznetsova, V. B. Vasilenko, and L. D. Kholodova, “Compositional features of the rock-forming minerals of the Oshurkovo Massif,” in Materials on Genetic and Experimental Mineralogy (Novosibirsk, 1995), No. 832, pp. 81–97 [in Russian].

    Google Scholar 

  17. G. M. Yatsenko, “Oshurkovo-type intrusions in the central part of western Transbaikalia,” in Ore Potential of the Transbaikalian Geological Associations (Nauka, Novosibirsk, 1982), pp. 93–99 [in Russian].

    Google Scholar 

  18. Petrographic Code. Third Edition (Izd-vo VSEGEI, St. Petersburg, 2009) [in Russian].

  19. M. G. Shadaev, V. F. Posokhov, and G. S. Ripp, “First data on Early Cretaceous pegmatites in Western Transbaikalia: Rb-Sr dating,” Russ. Geol. Geophys. 42(9), 1421–1424 (2001).

    Google Scholar 

  20. G. S. Ripp, O. V. Kobylkina, A. G. Doroshkevich, and A. O. Sharakshinov, Late Mesozoic Carbonatites of Western Transbaikalia (Izd-vo BNTs SO RAN, Ulan-Ude, 2000) [in Russian].

    Google Scholar 

  21. A. G. Doroshkevich and G. S. Ripp, “Isotopic systematics of the rocks of the Khalyuta carbonatite complex of Western Transbaikalia,” Geochem. Int. 47(12), 1198–1211 (2009).

    Article  Google Scholar 

  22. N. V. Vladykin, “Sr and Nd isotope geochemistry of alkaline and carbonatite complexes of Siberia and Mongolia and some geodynamic consequences,” in Problems of Sources of Deep Magmatism and Plumes. Proceedings of 5th International Symposium, Petropavlovsk-Kamchatskii, Russia, 2005 (Irkutsk, 2005), pp. 15–30 [in Russian].

    Google Scholar 

  23. V. V. Vrublevskii and I. F. Gertner, “Nature of carbonatite-bearing complexes of folded areas: isotope evidence for mantle-crust interaction,” in Problems of Sources of Deep Magmatism and Plumes. Proceedings of 5th International Symposium, Petropavlovsk-Kamchatskii, Russia, 2005 (Irkutsk, 2005), pp. 30–49 [in Russian].

    Google Scholar 

  24. V. V. Yarmolyuk, V. G. Ivanov, and V. I. Kovalenko, “Sources of intraplate magmatism of Western Transbaikalia in the Late Mesozoic-Cenozoic: trace-element and isotope data,” Petrology 6(2), 115–138 (1998).

    Google Scholar 

  25. V. V. Yarmolyuk, A. V. Nikiforov, V. A. Kovalenko, V.G. Ivanov, and D. Z. Zhuravlev, “Sources of Late Mesozoic carbonatites of the Western Transbaikalia: trace-element and Sr-Nd isotope data,” Geokhimiya 39(1), 60–78 (2001).

    Google Scholar 

  26. I. V. Gordienko, V. S. Klimuk, V. G. Ivanov, and V. F. Posokhov, “New data on composition and age of bimodal volcanic series of the Tugnui riftogenic depression, Trans-Baikal Region,” Dokl. Earth Sci. 352(6), 273–276 (1997).

    Google Scholar 

  27. A. Zindler and S. R. Hart, “Chemical geodynamics,” Ann. Rev. Earth Planet. Sci. 14, 493–571 (1986).

    Article  Google Scholar 

  28. P. F. O. Cordeiro, J. A. Brod, E. L. Dantas, and E. S. R. Bardosa, “Mineral chemistry, isotope geochemistry and petrogenesis of niobium-rich rocks from the Catalao I carbonatite-phoscorite complex, Central Brazil,” Lithos 118, 223–237 (2010).

    Article  Google Scholar 

  29. I. Appora, J. M. Eiler, A. Matthews, and E. Stolper, “Experimental determination of oxygen isotope fractionations between CO2 vapor and soda-melilite melt,” Geochim. Cosmochim. Acta 67(3), 459–471 (2003).

    Article  Google Scholar 

  30. J. Hoefs, Stable Isotope Geochemistry (Springer, 2009).

    Google Scholar 

  31. S. Epstein and H. P. Taylor, “Variation of O18/O16 in minerals and rocks,” in Researches in Geochemistry (Wiley, New York, 1967), Vol. 2, pp. 29–62.

    Google Scholar 

  32. H. P. Taylor, “The application of oxygen and hydrogen isotope studies to problems of hydrothermal alteration and ore deposition,” Econ. Geol. 69, 843–887 (1974).

    Article  Google Scholar 

  33. T. Agemar, G. Worner, and A. Heumann, “Stable isotopes and amphibole chemistry on hydrothermally altered granitoids in the North Chilean Precordillera: a limited role of meteoric water?,” Contrib. Mineral. Petrol. 136, 331–344 (1999).

    Article  Google Scholar 

  34. B. E. Taylor, J. C. Eichelberger, and H. R. Westrich, “Hydrogen isotopic evidence of rhyolitic magma degassing during shallow intrusion and eruption,” Nature 306, 541–545 (1983).

    Article  Google Scholar 

  35. P. I. Nabelek, J. R. O’Neil, and J. J. Papike, “Vapor phase exsolution as the controlling factor in hydrogen isotope variation in granite rocks: the Notche Peak Granitic Stock, Utah,” Earth Planet Sci. Lett. 66, 137–150 (1983).

    Article  Google Scholar 

  36. S. M. F. Sheppard, “Igneous rocks: III. Isotopic case studies of magmatism in Africa, Eurasia, and oceanic islands,” in Stable Isotopes, Rev. Mineral. 16, 319–368 (1986).

    Google Scholar 

  37. C. M. Graham, R. S. Harmon, and S. M. Sheppard, “Experimental hydrogen isotope studies: hydrogen isotope exchange between amphibole and water,” Am. Mineral. 69, 128–138 (1984).

    Google Scholar 

  38. T. W. Vennemann and J. R. O’Neil, “Hydrogen isotope exchange reactions between hydrous minerals and molecular hydrogen,” Geochim. Cosmochim. Acta 60, 2437–2451 (1996).

    Article  Google Scholar 

  39. M. Marks, T. Vennemann, W. Siebet, and G. Markl, “Nd-, O-, and H-isotope evidence for complex, closed-system fluid evolution of the peralkaline Ilimaussaq Intrusion, South Greenland,” Geochim. Cosmochim. Acta 68(16), 3379–3395 (2004).

    Article  Google Scholar 

  40. H. P. Taylor, J. Frechen, and E. T. Degens, “Oxygen and carbon isotope studies of carbonatites from the Laacher See District, West Germany and the Alno District, Sweden,” Geochim. Cosmochim. Acta 31, 407–430 (1967).

    Article  Google Scholar 

  41. M. Javoy, F. Pineau, and H. Delorme, “Carbon and hydrogen isotopes in the mantle,” Chem. Geol. 57(1/2), 41–62 (1986).

    Article  Google Scholar 

  42. P. Deines, “Stable Isotope Variation in Carbonatites,” in Carbonatites-Genesis and Evolution (Unwin Hyman, London, 1989), pp. 301–359.

    Google Scholar 

  43. A. Demeny, T. W. Vennemann, E. Hegner, G. Nady, J. A. Milton, Z. Embey-Isztin, Z. Homonnay, and G. Dobosi, “Trace element and C-O-Sr-Nd isotope evidence for subduction-related carbonate-silicate melts in marble xenoliths (Pannonian Basin, Hungary),” Lithos 75, 89–113 (2004).

    Article  Google Scholar 

  44. J. Bottinga, “Calculation of fractionation factors for carbon and oxygen isotopic exchange in the system calcite-carbon dioxide-water,” J. Phys. Chem. 72(3), 800–808 (1968).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. S. Ripp.

Additional information

Original Russian Text © G.S. Ripp, A.G. Doroshkevich, E.I. Lastochkin, I.A. Izbrodin, 2014, published in Geokhimiya, 2014, Vol. 52, No. 4, pp. 302–318.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ripp, G.S., Doroshkevich, A.G., Lastochkin, E.I. et al. Isotope and geochemical characteristics of rocks from the Oshurkovo apatite-bearing massif, Western Transbaikalia. Geochem. Int. 52, 271–286 (2014). https://doi.org/10.1134/S0016702914020074

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016702914020074

Keywords

Navigation