Skip to main content
Log in

Role of response to changes in flow rate in the regulation of vessel radius and blood flow

  • Published:
Fluid Dynamics Aims and scope Submit manuscript

Abstract

Estimates are presented for the effect of susceptibility of the inner surface of the blood vessel wall to shear stress on changes in diameter and volume blood flow rate. The model of thin-walled vessel with radius controlled by two parameters is used. The effect of rheological factors, hematocrit, and oxygen content in blood on the value of vessel response to a change in shear stress is considered. The estimates showed that the contribution of the vessel response in question to a change in blood volume flow rate amounts tens per cent. The influence of rheological (Fahraeus and Fahraeus-Lindqvist) effects on flow rate lies within several per cent. The role of the vessel response considered increases with anaemia: at low hematocrit its contribution to increase in flow rate exceeds 10%. Variation of oxygen concentration within the normal range has almost no effect on the hemodynamic parameters. With hypoxia, on the contrary, the participation of this response on changes in flow rate weakens: in severe hypoxia decrease in blood flow rate owing to a change in oxygen concentration equals approximately 9%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. A. M. Melkumyants and S. A. Balashov, Mechanical Susceptibility of Arterial Endothelium (Triada, Tver, 2005) [in Russian].

    Google Scholar 

  2. B. E. Carlson and D. A. Beard, “Mechanical Control of Cation Channels in the Myogenic Response,” Amer. J. Physiol. Heart Circ. Physiol. 301 (2), H331–H343 (2011).

    Article  Google Scholar 

  3. A. Koller and P. Toth, “Contribution of Flow-Dependent VasomotorMechanism to the Autoregulation of Cerebral Blood Flow,” J. Vasc. Res. 49 5, 375–389 (2012).

    Article  Google Scholar 

  4. J. C. Liao and L. Kuo, “Interaction between Adenosine and Flow-Induced Dilation in Coronary Microvascular Network,” Amer. J. Physiol. Heart Circ. Physiol. 272 (4), H1571–H1581 (1997).

    Google Scholar 

  5. J. C. Arciero, B. E. Carlson, and T. W. Secomb, “Theoretical Model of Metabolic Blood Flow Regulation: Roles of ATP Release by Red Blood Cells and Conducted Responses,” Amer. J. Physiol. Heart Circ. Physiol. 295 (4), H1562–H1571 (2008).

    Article  Google Scholar 

  6. B. E. Carlson, J. C. Arciero, and T. W. Secomb, “Theoretical Model of Blood Flow Autoregulation: Roles of Myogenic, Shear-Dependent, and Metabolic Responses,” Amer. J. Physiol. Heart Circ. Physiol. 295 (4), H1572–H1579 (2008).

    Article  Google Scholar 

  7. E. VanBavel and B. G. Tuna, “Integrative Modeling of Small Artery Structure and Function Uncovers Critical Parameters for Diameter Regulation,” PloS ONE 9 (1): e86901. DOI: 10.1371/journalpone. 0086901 (2014).

    Article  ADS  Google Scholar 

  8. N. A. Kudryashov and I. L. Chernyavskii, “Numerical Simulation of the Process of Autoregulation of the Arterial Blood Flow,” Fluid Dynamics 43 (1), 38–56, (2008).

    Article  ADS  MathSciNet  Google Scholar 

  9. K. Sriram, B. Y. Salazar Vazquez, A. G. Tsai, et al., “Autoregulation and Mechanotransduction Control the Arteriolar Response to Small Changes in Hematocrit,” Amer. J. Physiol. Heart Circ. Physiol. 303 (9), H1096–1106 (2012).

    Article  Google Scholar 

  10. V. A. Buchin and N. Kh. Shadrina, “Regulation of the Lumen of a Resistance Blood Vessel byMechanical Stimuli,” Fluid Dynamics 45 2, 211–222 (2010).

    Article  ADS  MATH  Google Scholar 

  11. N. Kh. Shadrina, “On the Effect of Rheological and Myogenic Factors on the Blood Flow Rate in a Resistance Vessel,” Russ. J. Biomech. 17 4, 5–17 (2013).

    Google Scholar 

  12. N. Kh. Shadrina, “Estimation of the Shear Stress Response in a Resistance Blood Vessel,” Russ. J. Biomech. 18 3, 245–253 (2014).

    Google Scholar 

  13. S. A. Regirer, “Resistance Blood Vessel as a Nonlinear Mechanical System,” Izv. Vuzov. Prikl. Nelin. Dinamika 2 (3–4), 77–85 (1994).

    Google Scholar 

  14. M. Sharan and A. S. Popel, “A Two-Phase Model for Flow of Blood in Narrow Tubes with Increased Effective Viscosity near the Wall,” Biorheology 38 (5–6), 415–428 (2001).

    Google Scholar 

  15. D. A. Fedosov, B. Caswel, A. S. Popel, and G. E. Karniadakis, “Blood Flow and Cell-Free Layer in Microvessels,” Microcirculation 17 8, 615–628 (2010).

    Article  Google Scholar 

  16. A. R. Pries, D. Neuhaus, and P. Gaehtgens, “Blood Viscosity in Tube Flow: Dependence on Diameter and Hematocrit,” Amer. J. Physiol. Heart Circ. Physiol. 263 (6), H1770–H1778 (1992).

    Google Scholar 

  17. H. J. Knot and M. T. Nelson, “Regulation of Arterial Diameter and Wall [Ca2+] in Cerebral Arteries of Rat by Membrane Potential and Intravascular Pressure,” J. Physiology 508 1, 199–209 (1998).

    Article  Google Scholar 

  18. K. M. Arthurs, L. C. Moore, C. S. Peskin, et al., “ModelingArteriolar Flow and Mass TransportUsing the Immersed Boundary Method,” J. Comput. Phys. 147 2, 402–404 (1998).

    Article  ADS  MathSciNet  Google Scholar 

  19. G. L. Baumbach, J. G. Walmsley, and M. N. Hart, “Composition and Mechanics of Cerebral Arterioles in Hypertensive Rats,” Am. J. Pathol. 133 3, 464–471 (1988).

    Google Scholar 

  20. M. Kavdia and A. S. Popel, “Wall Shear Stress Differentially AffectsNO Level in Arterioles for Volume Expanders and Hb-Based O2 Carriers,” Microvasc. Res. 66 1, 49–58 (2003).

    Article  Google Scholar 

  21. A. Rengasamy and R. A. Johns, “Determination of Km for Oxygen of Nitric Oxide Synthase Isoforms,” J. Pharmacol. Exp. Ther. 276 1, 30–33 (1996).

    Google Scholar 

  22. U. Windberger, A. Bartholovitsch, R. Plasenzotti, et al., “Whole Blood Viscosity, Plasma Viscosity and Erythrocyte Aggregation in Nine Mammalian Species: Reference Values and Comparison of Data, Exp. Physiol. 88 3, 431–440 (2003).

    Article  Google Scholar 

  23. Human Physiology, Vols. 1–4, ed. by R. F. Schmidt and G. Thews (Springer, 1983).

  24. S. A. Regirer and N. Kh. Shadrina, “Mathematical Models of Nitric Oxide Transport in a Blood Vessel,” Biophysics 50 3, 454–472 (2005).

    Google Scholar 

  25. F. M. Faraci, “Role of Endothelium-Derived Relaxing Factor in Cerebral Circulation: Large Arteries vs. Microcirculation, Amer. J. Physiol. Heart Circ. Physiol. 261 (4), H1038–H1042 (1991).

    Google Scholar 

  26. Y. Kajita, M. Takayasu, Y. Suzuki, et al., “Regional Differences in Cerebral Vasomotor Control by Nitric Oxide,” Brain Res. Bull. 38 4, 365–369 (1995).

    Article  Google Scholar 

  27. J. P. Muizelaar, G. J. Bouma, J. E. Levasseur, and H. A. Kontos, “Effect of Hematocrit Variations on Cerebral Blood Flow and Basilar Artery Diameter in Vivo,” Amer. J. Physiol. Heart Circ. Physiol. 262 (4), H949–H954 (1992).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Kh. Shadrina.

Additional information

Original Russian Text © N.Kh. Shadrina, 2016, published in Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, 2016, Vol. 51, No. 3, pp. 79–88.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shadrina, N.K. Role of response to changes in flow rate in the regulation of vessel radius and blood flow. Fluid Dyn 51, 372–380 (2016). https://doi.org/10.1134/S0015462816030091

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0015462816030091

Keywords

Navigation