Skip to main content
Log in

On the hyperbolicity of one-dimensional models for transient two-phase flow in a pipeline

  • Published:
Fluid Dynamics Aims and scope Submit manuscript

Abstract

Characteristic properties of one-dimensionalmodels of transient gas-liquid two-phase flows in long pipelines are investigated. The methods for studying the hyperbolicity of the systems of equations of multi-fluid and drift-fluxmodels are developed. On the basis of analytical and numerical studies, the limits of the hyperbolicity domains in the space of governing dimensionless parameters are found, and the impact of the closure relations on the characteristic properties of the models is analyzed. The methods of ensuring the global unconditional hyperbolicity are proposed. Explicit formulas for the eigenvelocities of the system of the drift-flux model equations are obtained and the conclusions about their sign-definiteness are drawn.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. O. Bratland, Pipe Flow 2: Multi-Phase Flow Assurance. 2009. drbratland.com.

    Google Scholar 

  2. J.D. Ramshaw and J.A. Trapp, “Characteristics, Stability, and Short-Wavelength Two-Phase Flows in Systems of Equations,” Nuclear Sc. Eng. 66 (1), 93–102 (1978).

    Google Scholar 

  3. K.H. Bendiksen, D. Maines, R. Moe, and S. Nuland, “The Dynamic Two-Fluid Model OLGA; Theory and Applications,” SPE Technology 6 (2), (1991).

    Google Scholar 

  4. D. Lhuillier, C.H. Chang, and T.G. Theofanous, “On the Quest for a Hyperbolic Effective-FieldModel of Disperse Flows,” J. Fluid Mech. 731, 184–194 (2013).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Kh.A. Rakhmatulin, “Fundamentals of Gas Dynamics of Interpenetrating Continua,” Prikl. Matem. Mekh. 20 (2), 184–195 (1956).

    Google Scholar 

  6. R.I. Nigmatulin, Dynamics of Multiphase Media. V.1. (Hemisphere, New York, 1989).

    Google Scholar 

  7. H. Stuhmiller, “The Influence of Interfacial Pressure Forces on the Character of Two-Phase Flow Model Equations,” Int. J. Multiphase Flow 3 (6), 551–560 (1977).

    Article  MATH  Google Scholar 

  8. M. Ndjinga, “Influence of Interfacial Pressure on the Hyperbolicity of the Two-Fluid Model,” Comptes Rendus Mathematique 344 (6), 407–412 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  9. A. Kumbaro and M. Ndjinga, “Influence of Interfacial Pressure Term on the Hyperbolicity of a General Multifluid Model,” J. Comput. Multiphase Flows 3 (3), 177–196 (2011).

    Article  MathSciNet  Google Scholar 

  10. B. Théron, Ecoulements Diphasiques Instationnaires en Conduite Horizontale, Thése INP Toulouse, France, 1989.

    Google Scholar 

  11. S. Benzoni-Gavage, Analyse Numérique des Modéles Hydrodynamiques d’écoulements Diphasiques Instationnaires dans les Réseaux de Production Pétroliére, Thése ENS Lyon, France, 1991.

    Google Scholar 

  12. S.L. Gavrilyuk and J. Fabre, “Lagrangian Coordinates for a Drift-Flux Model of a Gas-Liquid Mixture,” Int. J. Multiphase Flow 22 (3) 453–460 (1996).

    Article  MATH  Google Scholar 

  13. S. Evje and T. Flåtten, “On the Wave Structure of Two-Phase Models,” Siam J. Appl. Math. 67 (2), 487–511 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  14. B.L. Rozhdestvenskii and N.N. Yanenko, Systems of Quasi-Linear Equations and Their Applications to Gas Dynamics [in Russian] (Nauka, Moscow, 1978).

    MATH  Google Scholar 

  15. A.G. Kulikovskii, N.V. Pogorelov, and A.Yu. Semenov, Mathematical Problems of Numerical Solution of Hyperbolic Systems of Equations [in Russian] (Fizmatlit, Moscow, 2001).

    MATH  Google Scholar 

  16. D. Barnea and Y. Taitel, “Kelvin–Helmholtz Stability Criteria for Stratified Flow: Viscous Versus Non-Viscous (Inviscid) Approaches,” Int. J. Multiphase Flow 19, 639–649 (1993).

    Article  MATH  Google Scholar 

  17. D. Barnea and Y. Taitel, “Interfacial and Structural Stability of Separated Flow,” Int. J. Multiphase Flow 20 387–414 (1994).

    Article  MATH  Google Scholar 

  18. M.R. Baer and J.W. Nunziato, “Two-Phase Mixture Theory for the Deflagration to Detonation Transition (DDT) in Reactive Granular Materials,” Int. J. Multiphase Flow 12 (6), 861–889 (1986).

    Article  MATH  Google Scholar 

  19. E. Romenski and E.F. Toro, “Compressible Two-Phase Flows: Two-Pressure Models and Numerical Methods,” Comput. Fluid Dyn. J. 13, 403–416 (2004).

    MATH  Google Scholar 

  20. T. Galloüet, J.M. Hérard, and N. Seguin, “Numerical Simulation of Two-Phase Flows Using Two-Fluid Two-Pressure Approach,” Mathem. Model. Meth. Appl. Sci. 14 (5), 663–700 (2004).

    Article  MATH  Google Scholar 

  21. M. Bonizzi, P. Andreussi, and S. Banerjee, “Flow Regime Independent, High Resolution Multi-Field Modelling of Near-Horizontal Gas-Liquid Flows in Pipelines,” Int. J. Multiphase Flow 35 (1), 34–46 (2009).

    Article  Google Scholar 

  22. U. Kadri, R.F. Mudde, R.V.A. Oliemans, et al., “Prediction of the Transition from Stratified to Slug Flow or Roll-Waves in Gas-Liquid Horizontal Pipes,” Int. J. Multiphase Flow 35 (11) 1001–1010 (2009).

    Article  Google Scholar 

  23. A.A. Osiptsov, “A Self-Similar Solution to the Problem of Lava Dome Growth on an Arbitrary Conical Surface,” Fluid Dynamics 39 (1), 53–68 (2004).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. M.A. Jenkins and J.F. Traub, “A Three-Stage Algorithm for Real Polynomials Using Quadratic Iteration,” SIAM J. Numer. Analysis 7 (4), 545–566 (1970).

    Article  MathSciNet  MATH  Google Scholar 

  25. N. Zuber and J.A. Findlay, “Average Volumetric Concentration in Two-Phase Flow Systems,” Trans. ASME. Ser. C. J. Heat Transfer 87 (4), 453–468 (1965).

    Article  Google Scholar 

  26. A.R. Hasan and C.S. Kabir, Fluid Flow and Heat Transfer in Wellbores (Soc. Petrol. Eng., Richardson, Texas, 2002).

    Google Scholar 

  27. J.M. Masella, Q.H. Tran, D. Ferre, and C. Pauchon, “Transient Simulation of Two-Phase Flows in Pipes,” Int. J. Multiphase Flow 24 (5), 739–755 (1998).

    Article  MATH  Google Scholar 

  28. A.A. Osiptsov, K.F. Sin’kov, and P.E. Spesivtsev, “Justification of the Drift-Flux Model for Two-Phase Flow in a Circular Pipe,” Fluid Dynamics 49 (5), 614–626 (2014).

    Article  MATH  Google Scholar 

  29. P.A. Varadarajan and P.S. Hammond, “Numerical Scheme for Accurately Capturing Gas Migration Described by 1D Multiphase Drift Flux Model,” Int. J. Multiphase Flow 73 57–70 (2015).

    Article  MathSciNet  Google Scholar 

  30. P. Spesivtsev, K. Sinkov, and A.A. Osiptsov, “The Hyperbolic Nature of a System of Equations Describing Three-Phase Flows in Wellbores,” in: 14th European Conference on the Mathematics of Oil Recovery, Catania, Italy, 2014.

    Google Scholar 

  31. H. Shi, J.A. Holmes, L.J. Durlofsky, et al. “Drift-Flux Modeling of Two-Phase Flow in Wellbores,” SPE Journal 10 (1), 24–33 (2005).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. D. Zhibaedov.

Additional information

Original Russian Text © V.D. Zhibaedov, N.A. Lebedeva, A.A. Osiptsov, K.F. Sin’kov, 2016, published in Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, 2016, Vol. 51, No. 1, pp. 55–68.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhibaedov, V.D., Lebedeva, N.A., Osiptsov, A.A. et al. On the hyperbolicity of one-dimensional models for transient two-phase flow in a pipeline. Fluid Dyn 51, 56–69 (2016). https://doi.org/10.1134/S0015462816010075

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0015462816010075

Keywords

Navigation