Skip to main content
Log in

Effect of V2O5 on the oxidation mechanism of ASD-4 powder

  • Published:
Combustion, Explosion, and Shock Waves Aims and scope

Abstract

Thermokinetic data on the oxidation of ASD-4 powder modified by impregnation with V2O5 gel were obtained by thermogravimetry and differential scanning calorimetry under heating in air to 1250°C at a rate of 10 deg/min. The phase formation process directly during oxidation of the modified ASD-4 was studied by powder x-ray diffraction method using a synchrotron radiation source. A mechanism for the effect of V2O5 on the oxidation of ASD-4 is proposed on the basis of literature data and analysis of the results of the studies performed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. G. Shevchenko, “Directions of Modification of Particulate Aluminum for Energetic Condensed Systems,” Vestn. YuUrGU, Ser. Mashinostroenie, No. 33 (292), 101–106 (2012).

    Google Scholar 

  2. A. Pivkina, A. Streletskii, I. Kolbanev, P. Ul’yanova, Yu. Frolov, P. Butyagin, and J. Schoonman, “Mechanochemically Activated Nano-Aluminium: Oxidation Behaviour,” J. Mater. Sci. 39, 5451–5453 (2004).

    Article  ADS  Google Scholar 

  3. A. N. Streletskii, I. V. Kolbanev, A. B. Borunova, and P. Yu. Butyagin, “Mechanochemically Activated Aluminium: Preparation, Structure, and Chemical Properties,” J. Mater. Sci. 39, 5175–5179 (2004).

    Article  ADS  Google Scholar 

  4. A. N. Streletskii, A. Yu. Dolgoborodov, I. V. Kolbanev, M. N. Makhov, S. F. Lomaeva, A. B. Borunova, and V. E. Fortov, “Structure of Mechanically Activated Energetic Al+ Polytetrafluoroethylene Nanocomposites,” Kolloid. Zh. 1, 835–843 (2009).

    Google Scholar 

  5. S. G. Fedorov, Sh L. Guseinov, and P. A. Storozhenko, “Nanodispersed Metal Powders in Energetic Condensed Systems,” Ros. Nanotekhnologii 5, 27–39 (2010).

    Google Scholar 

  6. D. E. G. Jones, R. Turcotte, R. C. Fouchard, Q. S. M. Kwok, A.-M. Turcotte, and Z. Abdel-Qader, “Hazard Characterization of Aluminum Nanopowder Compositions,” Propel., Explos., Pyrotech. 28, 120–131 (2003).

    Article  Google Scholar 

  7. K. W. Watson, M. L. Pantoya, and V. I. Levitas, “Fast Reactions with Nano-and Micrometer Aluminum: A Study on Oxidation Versus Fluorination,” Combust. Flame 155, 619–634 (2008).

    Article  Google Scholar 

  8. S. M. Walley and W. G. Proud, “Particle Size Effect on Strength, Failure, and Shock Behavior in Polytetrafluoroethylene-Al–W Granular Composite Materials,” J. Appl. Phys. 104, 103903 (2008).

    Article  ADS  Google Scholar 

  9. K. S. Martirosyan, “Nanoenergetic Gas-Generators: Principles and Applications,” J. Mater. Chem. 21, 9400–9405 (2011).

    Article  Google Scholar 

  10. V. G. Shevchenko, V. I. Kononenko, A. V. Churaev, and G. Ya. Pavlovets, “Prospects for the Use of Rare Earth Elements to Accelerate the Oxidation of Aluminum Powder,” Khim. Fiz. 24 (6), 1–4 (2005).

    Google Scholar 

  11. A. Pivkina, D. Ivanov, Yu. Frolov, S. Mudretsova, A. Nickolskaya, and J. Schoonman, “Plasma Synthesized Nano-Aluminum Powders: Structure, Thermal Properties and Combustion Behavior,” J. Therm. Anal. Calorimetry 86, 733–738 (2006).

    Article  Google Scholar 

  12. S. Gangopadhyay, S. Apperson, K. Gangopadhyay, A. Bezmelnitsyn, R. Thiruvengathan, M. Kraus, R. Shende, M. Hossain, S. Subramanian, S. Bhattachacharya, and Y. Gao, “Shock Wave and Power Generation Using on-Chip Nanoenergetic Material,” US Patent No. 20090152873 A1, Publ. 18.06. 2009.

    Google Scholar 

  13. S. Zeuner, A. Hofmann, A. Schropp, and K.-H. Rodig, “Guanidine-Thermite Igniter Composition for Use in Gas Generators,” US Patent No. 6,599,380 B2. Publ. 29.07. 2003.

    Google Scholar 

  14. Y. Gan and L. Qiao, “Combustion Characteristics of Fuel Droplets with Addition of Nano-and Micron-Sized Aluminum Particles,” Combust. Flame 158, 354–368 (2011).

    Article  Google Scholar 

  15. N. H. Yen and L. Y. Wang, “Reactive Metals in Explosives,” Propel., Explos., Pyrotech. 37, 143–155 (2012).

    Article  Google Scholar 

  16. Y. Aly, M. Schoenitz, and E. L. Dreizin, “Ignition and Combustion of Mechanically Alloyed Al–Mg Powders with Customized Particle Sizes,” Combust. Flame 160, 835–842 (2013).

    Article  Google Scholar 

  17. A. Hahma, A. Gany, and K. Polovuori, “Combustion of Activated Aluminum,” Combust. Flame 145, 464–480 (2006).

    Article  Google Scholar 

  18. R. Thiruvengadathan, A. Bezmelnitsyn, S. Apperson, C. Staley, P. Redner, W. Balas, S. Nicolich, D. Kapoor, K. Gangopadhyay, and S. Gangopadhyay, “Combustion Characteristics of Novel Hybrid Nanoenergetic Formulations,” Combust. Flame 158, 964 (2011).

    Article  Google Scholar 

  19. L. D. Romodanova, P. P. Pokhil, and E. S. Kadaner, “Action of V2O5 on the Burning Rate of Compositions Based on Ammonium Perchlorate and Metal Fuels,” Fiz. Goreniya Vzryva 3 (3), 330–333 (1968) [Combust., Expl., Shock Waves 3 (3), 186–187 (1968)].

    Google Scholar 

  20. J. A. Puszynski, C. J. Bulian, and J. J. Swiatkiewicz, “Processing and Ignition Characteristics of Aluminum-Bismuth Trioxide Nanothermite System,” J. Propul. Power 23, 698–706 (2007).

    Article  Google Scholar 

  21. R. Shende, S. Subramanian, S. Hasan, S. Apperson, R. Thiruvengadathan, K. Gangopadhyay, and S. Gangopadhyay, “Nanoenergetic Composites of CuO Nanorods, Nanowires, and Al-Nanoparticles,” Propel., Explos., Pyrotech. 33, 122–130 (2008).

    Article  Google Scholar 

  22. D. G. Piercey and T. M. Klapotke, “Nanoscale Aluminum Metal Oxide (Thermite) Reactions for Application in Energetic Materials,” Centr. Eur. J. Energ. Mater. 7, 115–129 (2010).

    Google Scholar 

  23. K. D. Woo, J. H. Kim, E. P. Kwon, M. S. Moon, H. B. Lee, T. Sato, and Z. Liu, “Fabrication of Al Matrix Composite Reinforced with Submicrometer-Sized Al2O3 Particles Formed by Combustion Reaction between HEMM Al and V2O5 Composite Particles during Sintering,” Met. Mater. Int. 16, 213–218 (2010).

    Article  Google Scholar 

  24. D. Stamatis, X. Zhu, M. Schoenitz, E. L. Dreizin, and P. Redner, “Consolidation and Mechanical Properties of Reactive Nanocomposite Powders,” Powder Technol. 208, 637–642 (2011).

    Article  Google Scholar 

  25. K. Ilunga, O. Fabbro, L. Yapi, and W. W. Focke, “The Effect of Si—Bi2O3 on the Al—CuO Thermite,” Powder Technol. 205, 97–102 (2011).

    Article  Google Scholar 

  26. C. L. Yeh and H. J. Wang. “Formation of Ta–Al Intermetallics by Combustion Synthesis Involving Al-Based Thermite Reactions,” J. Alloys Compounds, 491, 153–158 (2010).

    Article  Google Scholar 

  27. A. R. Poda, R. D. Moser, M. F. Cuddy, Z. Doorenbos, B. J. Lafferty, C. A.Weiss, A. Harmon, and M. A. Chappell, J. A. Steevens, “Nano-Aluminum Thermite Formulations: Characterizing the Fate Properties of a Nanotechnology During Use,” J. Nanomater. Mol. Nanotechnol. 2, 100105 (2013).

    Article  Google Scholar 

  28. V. G. Shevchenko, V. L. Volkov, V. I. Kononenko, G. D. Zaharova, and I. A. Chupova, “Effect of Sodium and Potassium Polyvanadates on Aluminum-Powder Oxidation,” Fiz. Goreniya Vzryva 32 (4), 91–94 (1996) [Combust., Expl., Shock Waves 32 (4), 436–438 (1996)].

    Google Scholar 

  29. V. G. Shevchenko, D. A. Eselevich, A. V. Konyukova, and V. N. Krasilnikov, “Method of Activation of Aluminum Powder,” RF Patent No. 2509790. Publ. 03.20.2014, Byull. No. 8(1996).

  30. A. I. Ancharov, A. Yu. Manakov, N. A. Mezentsev, B. P. Tolochko, M. A. Sheromov, and V. M. Tsukanov, “New Station at the 4th Beamline of the VEPP-3 Storagering,” Nucl. Inst. Meth. A 470 (1-2), 80–83 (2001).

    Article  ADS  Google Scholar 

  31. W. Avansi, C. Ribeiro, E. R. Leite, and V. R. Mastelaro, “Vanadium Pentoxide Nanostructures: An Effective Control of Morphology and Crystal Structure in Hydrothermal Conditions,” Crystal Growth Design. 9, 3626–3631 (2009).

    Article  Google Scholar 

  32. V. L. Volkov, Intercalation Phases Based on Vanadium Oxides (Ural Branch, USSR Academy of Sciences, Sverdlovsk, 1987) [in Russian].

    Google Scholar 

  33. J. Zhao, C. Wang, X. Li, and C. Li, “Intercalation of Conducting Poly (N-Propane Sulfonic Acid Aniline) in V2O5 Xerogel,” J. Appl. Polymer Sci. 103, 2569–2574 (2007).

    Article  Google Scholar 

  34. C.-Y. Lee, A. C. Marschilok, A. Subramanian, K. J. Takeuchi, and E. S. Takeuchi, “Synthesis and Characterization of Sodium Vanadium Oxide Gels: The Effects of Water (n) and Sodium (x) Content on the Electrochemistry of NaxV2O5 · nH2O,” Phys. Chem. Chem. Phys. 13, 18047–18054 (2011).

    Article  Google Scholar 

  35. S. Kumar and N. Krishnamurthy, “Synthesis of V–Ti–Cr Alloys by Aluminothermy Co-Reduction of Its Oxides,” Proc. Appl. Ceram. 5, 181–186 (2011).

    Article  Google Scholar 

  36. G. Dabrowska, P. Tabero, and M. Kurzawa, “Phase Relations in the Al2O3–V2O5–MoO3 System in the Solid State. The Crystal Structure of AlVO4,” J. Phase Equilibria and Diffusion 30 (3), 220–229 (2009).

    Article  Google Scholar 

  37. N. S. Sharipova and G. I. Ksandopulo, “Phase and Structural Transformations and Mechanism of Propagation of Self-Propagating High-Temperature Synthesis in a V2O5–Al Mixture,” Fiz. Goreniya Vzryva 33 (6), 36–47 (1997) [Combust., Expl., Shock Waves 33 (6), 659–668 (1997).

    Google Scholar 

  38. Phase Diagrams of Binary Metallic Systems: A Handbook, Ed. by N. P. Lyakisheva (Mashinostroenie, Moscow, 1996), Vol. 1 [in Russian].

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © V.G. Shevchenko, V.N. Krasil’nikov, D.A. Eselevich, A.V. Konyukova, A.I. Ancharov, and B.P. Tolochko.

Published in Fizika Goreniya i Vzryva, Vol. 51, No. 5, pp. 70–76, September–October, 2015.

Original article submitted May 10, 2014; revision submitted June 20, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shevchenko, V.G., Krasil’nikov, V.N., Eselevich, D.A. et al. Effect of V2O5 on the oxidation mechanism of ASD-4 powder. Combust Explos Shock Waves 51, 572–577 (2015). https://doi.org/10.1134/S0010508215050081

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0010508215050081

Keywords

Navigation