Skip to main content
Log in

Hydrogen and air detonation (deflagration) synthesis of carbon-encapsulated iron nanoparticles

  • Published:
Combustion, Explosion, and Shock Waves Aims and scope

Abstract

With ferrocene as a precursor, carbon-encapsulated iron nanoparticles are synthesized through detonation of a gas mixture of hydrogen and air in a titanium detonation tube. XRD and TEM characterization shows that a downward trend in the size of particles can be observed with increasing amounts of the precursor. However, no further decrease occurs when the size of nanoparticles reaches approximately ≈40 nm, after which they remain in the range of 30–50 nm. The initial temperature of the detonation tube at 353 K is the optimal initial temperature for the synthesis. The average grain size of the synthesized products becomes larger as the temperature of detonation increases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. B. B. Bokhonov, “Permeability of Carbon Shells During Sulfidation of Encapsulated Silver Nanoparticles,” Carbon 67, 572–577 (2014).

    Article  Google Scholar 

  2. B. B. Bokhonov and S. A. Novopashin, “In situ Investigation of Morphological and Phase Changes During Thermal Annealing and Oxidation of Carbon- Encapsulated Copper Nanoparticles,” J. Nanopart. Res. 12 (8), 2771–2777 (2010).

    Article  Google Scholar 

  3. P. G. Collins, A. Zettl, H. Bando, A. Thess, and R. E. Smalley, “Nanotube Nanodevice,” Science 278 (3), 100–103 (1997).

    Article  Google Scholar 

  4. K. Bubke, H. Gnewuch, M. Hempstead, J. Hammer, and M. L. H. Green, “Optical Anisotropy of Dispersed Carbon Nanotubes Induced by an Electric Field,” Appl. Phys. Lett. 71 (14), 1906–1908 (1997).

    Article  ADS  Google Scholar 

  5. Z. D. Zhang, J. G. Zheng, I. Skorvanek, et al., “Shell/Core Structure and Magnetic Properties of Carbon Coated FeCo(C) Nanocapsules,” J. Phys. Condensed Matter. 13 (9), 1921–1929 (2001).

    Article  ADS  Google Scholar 

  6. Z. D. Zhang, J. L. Yu, J. G. Zheng, et al., “Structure and Magnetic Properties of Boron–Oxide–Coated Fe(B) Nanocapsules Prepared by Arc Discharge in Diborane,” Phys. Rev. B 64 (2), 024404(1–5) (2001).

    Article  ADS  Google Scholar 

  7. Z. H. Wang, Z. D. Zhang, C. J. Choi, et al., “Structure and Magnetic Properties of Fe(C) and Co(C) Nanocapsules Prepared by Chemical Vapor Condensation,” J. Alloy Compounds 361 (1/2), 289–293 (2003).

    Article  Google Scholar 

  8. X. L. Dong, Z. D. Zhang, S. R. Jin, et al., “Characterization of Fe–Ni(C) Nanocapsules Synthesized by Arc Discharge in Methane,” J. Mater. Res. 14 (5), 1782–1790 (1999).

    Article  ADS  Google Scholar 

  9. Y. Yosida, S. Shida, and T. Ohsuna, “Synthesis, Identification, and Growth Mechanism of Fe, Ni, and Co Crystals Encapsulated in Multiwalled Carbon Nanocages,” J. Appl. Phys. 76 (8), 4533–4539 (1994).

    Article  ADS  Google Scholar 

  10. J. J. Host, J. A. Block, K. Parvin, et al., “Effect of Annealing on the Structure and Magnetic Properties of Graphite Encapsulated Nickel and Cobalt Nanocrystals,” J. Appl. Phys. 83 (2), 793–801 (1998).

    Article  ADS  Google Scholar 

  11. Z. Y. Zhong, H. Y. Chen, S. B. Tang, et al., “Catalytic Growth of Carbon Nanoballs with and without Cobalt Encapsulation,” Chem. Phys. Lett. 330 (1/2), 41–47 (2000).

    Article  ADS  Google Scholar 

  12. N. Sano, H. Akazawa, T. Kikuchi, et al., “Separated Synthesis of Iron-Included Carbon Nanocapsules and Nanotubes by Pyrolysis of Ferrocene in Pure Hydrogen,” Carbon 41 (11), 2159–2179 (2003).

    Article  Google Scholar 

  13. P. J. F. Harris and S. C. Tsang, “A Simple Technique for the Synthesis of Filled Carbon Nanoparticles,” Chem. Phys. Lett. 293 (1/2), 53–58 (1988).

    ADS  Google Scholar 

  14. H. M. Zhang, Y. Cui, and H. J. Zhong, “Study on Preparation of Amorphous ZnO Nanopowder by Low Temperature Pyrolysis Method,” J. Synth. Cryst. 33 (6), 978–981 (2004).

    Google Scholar 

  15. T. Oyama and K. Takeuchi, “Gas-Phase Synthesis of Crystalline B4C Encapsulated in Graphitic Particles by Pulsed-Laser Irradiation,” Carbon 37 (3), 433–436 (1999).

    Article  Google Scholar 

  16. W. Z. Wu, Z. P. Zhu, Z. Y. Liu, et al., “Preparation of Carbon-Encapsulated Iron Carbide Nanoparticles by an Explosion Method,” Carbon 41 (2), 317–321 (2003).

    Article  Google Scholar 

  17. H. T. Yuan, Y. Feng, L. J. Qiao, et al., “Impact on Performance of Ti, Zr Magnesium-Based Alloys by Graphite Coating,” Power Technol. 28 (4), 216–219 (2008).

    Google Scholar 

  18. X. J. Li, N. Luo, X. Ouyang, et al., “Research Status on Synthesis of Carbon Encapsulated Metal Nanomaterial,” Mater. Rev. 23 (7), 33–37 (2009).

    Google Scholar 

  19. C. X. Lv, Industrial Explosives Theory (Ordnance Industry Press, Beijing, 2003).

    Google Scholar 

  20. B. P. Zhang, Q. M. Zhang, and F. L. Huang, Detonation Physics (Ordnance Industry Press, Beijing, 2009).

    Google Scholar 

  21. H. L. Cao and W. Q. Xu, “The Teaching Discussion of the Observation Experiment of Iron–Carbon Alloy Balance Organization,” Exp. Technol. Management 26 (8), 134–136 (2009).

    Google Scholar 

  22. D. S. Dai and K. M. Qian, Ferromagnetic Science (Science Press, Beijing, 1998), Vol. I.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Yan.

Additional information

Original Russian Text © H. Yan, T. Zhao, X. Li, Ch. Hun.

Published in Fizika Goreniya i Vzryva, Vol. 51, No. 4, pp. 109–115, July–August, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, H., Zhao, T., Li, X. et al. Hydrogen and air detonation (deflagration) synthesis of carbon-encapsulated iron nanoparticles. Combust Explos Shock Waves 51, 495–501 (2015). https://doi.org/10.1134/S0010508215040152

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0010508215040152

Keywords

Navigation