Skip to main content
Log in

Superadiabatic temperature phenomenon in the combustion processes due to a competition between chemical reactions

  • Published:
Combustion, Explosion, and Shock Waves Aims and scope

Abstract

The existence of a new type of superadiabatic temperature phenomenon in flames and during autoignition due to a competition between chemical reactions is inferred from literature data and the results of mathematical modeling of chemical kinetics and numerical experiments. The mechanisms, conditions for the occurrence, and nature of the phenomenon are discussed. It is noted that this phenomenon may have promising academic and practical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. V. S. Babkin, I. Wierzba, and C. A. Karim, “The Phenomenon of Energy Concentration on Combustion Waves and Applications,” Chem. Eng. J. 91, 279–285 (2003).

    Article  Google Scholar 

  2. Propagation of Thermal Waves in Heterogeneous Media (Nauka, Novosibirsk, 1988) [in Russian].

  3. A. I. Rozlovskii, “Thermal Regime of Combustion of Rich Carbon-Containing Mixtures of Subcritical Composition,” Dokl. Akad. Nauk SSSR 186(2), 373–376 (1969).

    Google Scholar 

  4. J. M. Singer and J. Grumer, “Carbon Formation in Very Rich Hydrocarbon-Air Flames-1. Studies of Chemical Content, Temperature, Ionization and Particulate Matter,” Proc. Combust. Inst. 7, 559–569 (1958).

    Article  Google Scholar 

  5. E. Meeks, R. J. Kee, D. S. Dandy, and M. E. Coltrin, “Computational Simulation of Diamond Chemical Vapor CH4/O2-Strained Flames,” Combust. Flame 92, 144–160 (1993).

    Article  Google Scholar 

  6. K. E. Bertagnolli and R. P. Lucht, “Temperature Profile Measurements in Stagnation-Flow Diamond-Forming Flames Using Hydrogen CARS Spectroscopy,” Proc. Combust. Inst. 26, 1825–1833 (1996).

    Article  Google Scholar 

  7. B. Ruf, F. Behrendt, O. Deutschmann, S. Kleditzsch, and J. Warnatz, “Modeling of Chemical Vapor Deposition of Diamond Films from Acetylene-Oxygen Flames,” Proc. Combust. Inst. 28, 1455–1461 (2000).

    Article  Google Scholar 

  8. F. Liu, H. Guo, G. J. Smallwood, and O. L. Gülder, “Numerical Study of the Superadiabatic Flame Temperature Phenomenon in Hydrocarbon Premixed Flames,” Proc. Combust. Inst. 29, 1543–1550 (2002).

    Article  Google Scholar 

  9. V. V. Zamaschikov, I. G. Namyatov, V. A. Bunev, and V. S. Babkin, “On the Nature of Superadiabatic Temperatures in Premixed Rich Hydrocarbon Flames,” Fiz. Goreniya Vzryva 40(1), 38–41 (2004) [Combust., Expl., Shock Waves 40 (1), 32–35 (2004)]

    Google Scholar 

  10. F. Liu and O. L. Gülder, “Effects of H2 and H Preferential Diffusion and Unity Lewis Number on Superadiabatic Flame Temperatures in Rich Premixed Methane Flames,” Combust. Flame 143, 264–281 (2005).

    Article  Google Scholar 

  11. E. Terres and F. Plenz, “Influence of Pressure on the Burning of Gas Mixtures,” J. Gasdbel. 57, 990–1027 (1914).

    Google Scholar 

  12. W. A. Bone, D. M. Newitt, and C. M. Smith, “Gaseous Combustion at High Pressures. IX. The Influence of Pressure Upon the “Explosion Limits” of Inflammable Gas-Air, etc., Mixtures,” Proc. Roy. Soc. A117, 553–576 (1928).

    Article  ADS  Google Scholar 

  13. G. W. Jones, R. E. Kennedy, and J. Spolan, “Effect of High Pressures on the Flammability of Natural Gas-Air-Nitrogen Mixtures,” Bur. Mines Rep. Invest. 4557 (1949).

    Google Scholar 

  14. Ya. B. Zel’dovich, Theory of Combustion and Detonation of Gases (Izd. Akad. Nauk SSSR, Moscow-Leningrad, 1944) [in Russian].

    Google Scholar 

  15. K. K. Andreev and A. F. Belyaev, Theory of Explosives, (Moscow, Oborongiz, 1960) [in Russian].

    Google Scholar 

  16. K. K. Kuo, Principles of Combustion (John & Sons. Inc., 1986).

    Google Scholar 

  17. V. A. Bunev, T. A. Bol’shova, and V. S. Babkin, “On the Nature of the Upper Limit of Laminar Flame Propagation in Methane-Air Mixtures at High Pressures,” Dokl. Akad. Nauk 452(1), 52–54 (2013).

    Google Scholar 

  18. A. E. Lutz, R. J. Kee, J. F. Grear, et al., OPPDIF: A Fortran Program for Combus ting Opposed-Flow Diffusion Flames (Sandia National Laboratories, Livermore, California, 1996).

    Google Scholar 

  19. G. P. Smith, D. M. Golden, M. Frenklach, et al., http://www.Me.berkeley.edu/gri_mech.2000.

  20. C. K. Low, D. L. Zhu, and G. Yu, “Propagation and Extinction of Stretched Premixed Flames,” Proc. Combust. Inst. 21, 1419–1426 (1986).

    Article  Google Scholar 

  21. B. A. Albrecht, J. B. W. Kok, N. Dijkstra, and T. van der Meer, “Prediction and Measurement of the Product Gas Composition of the Ultra Rich Premixed Combustion of Natural Gas: Effects of Equivalence Ratio, Residence Time, Pressure, and Oxygen Concentration,” Combust. Sci. Technol. 181, 433–456 (2009).

    Article  Google Scholar 

  22. V. A. Bunev and V. S. Babkin, “Chemical Reactions in the Low-Temperature Zone of a Laminar Rich Propane-Air Flame,” Fiz. Goreniya Vzryva 42(5), 14–19 (2006) [Combust., Expl., Shock Waves 42 (5), 503–598 (2006)].

    Google Scholar 

  23. V. A. Bunev, “Main Dangers in the Use of Dimethyl Ether as a Fuel,” Ekolog. Khim. 16, 107–123 (2007).

    Google Scholar 

  24. V. A. Bunev, V. S. Babkin, “Effect of Superadiabatic Temperatures in the Autoignition of Dimethyl Ether Mixtures,” Mendeleev Commun. 19, 290–291 (2009).

    Article  Google Scholar 

  25. B. Lewis and G. von Elbe, “On the Theory of Flame Propagation,” J. Chem. Phys. 2, 537 (1934).

    Article  ADS  Google Scholar 

  26. O. P. Korobeinichev, A. A. Paletsky, A. A. Bolshova, and V. D. Knyazev, “A Numerical Study of the Superadiabatic Flame Temperature Phenomenon in HN3 Flames,” Combust. Theory Modell. 16(5), 927–939 (2012).

    Article  ADS  Google Scholar 

  27. J. J. Macfarlane, “Carbon Formation Premixed Methane-Oxygen Flames under Constant-Volume Combustion,” Combust. Flame 14, 67–72 (1970).

    Article  Google Scholar 

  28. V. S. Babkin and A. V. V’yun, “Effect of Water Vapor on the Normal Velocity of a Methane-Air Mixture at High Pressures,” Fiz. Goreniya Vzryva 7(3), 392–395 (1971) [Combust., Expl., Shock Waves 7 (3), 339–341 (1971)].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. S. Babkin.

Additional information

Original Russian Text © V.S. Babkin, V.A. Bunev, T.A. Bolshova.

Published in Fizika Goreniya i Vzryva, Vol. 51, No. 2, pp. 14–22, March–April, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Babkin, V.S., Bunev, V.A. & Bolshova, T.A. Superadiabatic temperature phenomenon in the combustion processes due to a competition between chemical reactions. Combust Explos Shock Waves 51, 151–159 (2015). https://doi.org/10.1134/S0010508215020021

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0010508215020021

Keywords

Navigation