Skip to main content
Log in

A biophysical model of the contractile activity of muscle cells

  • Cell Biophysics
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract

Muscle cells have a distinctive structure, a developed cytoskeleton, which occupies most of the cell’s volume and forms, among other things, the contractile apparatus. A mathematical model of the biomechanical behavior of the cell as a whole was suggested based on the equations of continuum mechanics, which was next modified to describe the contractile activity of a muscle cell as an elastic rod. The model considers the result of the transduction of external effects that are manifested as an internal deformation, which allows the evaluation of the mobility and/or the emerging tension in muscle cells under the effects of external factors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. V. Ogneva, N. S. Biryukov, T. A. Leinsoo, and I. M. Larina, PLOS ONE 9 (4), e96395 (2014).

    Article  ADS  Google Scholar 

  2. I. V. Ogneva, M. V. Maximova, and I. M. Larina, J. Appl. Physiol. 116 (10), 1315 (2014).

    Article  Google Scholar 

  3. I. V. Ogneva, V. Gnyubkin, N. Laroche, et al., J. Appl. Physiol. 118 (5), 613 (2015).

    Article  ADS  Google Scholar 

  4. I. V. Ogneva and N. S. Biryukov, Appl. Math. 4 (8A), 1 (2013).

    Article  Google Scholar 

  5. A. A. Shabarchin and A. K. Tsaturyan, Biomech. Model. Mechanobiol. 9 (2), 163 (2010).

    Article  Google Scholar 

  6. V. V. Eliseev, Mechanics of Elastic Bodies (Izd. SPbGTUB, St. Petersburg, 1999).

    Google Scholar 

  7. I. V. Ogneva and V. V. Eliseev, Rev. Adv. Materials Sci. 20 (2), 158 (2009).

    Google Scholar 

  8. T. J. Dennerll, H. C. Joshi, V. L. Steel, et al., J. Cell Biol. 107, 665 (1998).

    Article  Google Scholar 

  9. A. J. Putnam, K. Schultz, and D. J. Mooney, Am. J. Physiol. Cell Physiol. 280 (3), C556 (2001).

    Google Scholar 

  10. S. Liu, D. A. Calderwood, and M. H. Ginsberg, J. Cell Sci. 113, 3563 (2000).

    Google Scholar 

  11. S. Sukharev, M. Betanzos, C. S. Chiang, and H. R. Guy, Nature 409, 720 (2001).

    Article  ADS  Google Scholar 

  12. R. Maroto, A. Raso, T. G. Wood, et al., Nat. Cell Biol. 7, 179 (2005).

    Article  Google Scholar 

  13. J. Howard and S. Bechstedt, Curr. Biol. 14 (6) R224 (2004).

    Article  Google Scholar 

  14. M. L. Salmi, A. ul Haque, T. J. Bushart, et al., Planta 233 (5), 911 (2011).

    Article  Google Scholar 

  15. X. Sun, E. McLamore, V. Kishore, et al., Bone 50 (3), 581 (2012).

    Article  Google Scholar 

  16. D. J. Odde, L. Ma, A. H. Briggs, et al., J. Cell Sci. 112, 3283 (1999).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Ogneva.

Additional information

Original Russian Text © A.S. Pokusaev, I.V. Ogneva, 2015, published in Biofizika, 2015, Vol. 60, No. 6, pp. 1132–1137.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pokusaev, A.S., Ogneva, I.V. A biophysical model of the contractile activity of muscle cells. BIOPHYSICS 60, 940–945 (2015). https://doi.org/10.1134/S0006350915060202

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006350915060202

Keywords

Navigation