Skip to main content
Log in

The continuous generation of hydrogen peroxide in water containing very low concentrations of unsymmetrical dimethylhydrazine

  • Molecular Biophysics
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract

Continuous generation of hydrogen peroxide catalyzed by low concentrations of 1,1-dimethylhydrazine (heptyl), a rocket fuel component, in air-saturated water was shown by the method of enhanced chemiluminescence in a luminol-p–iodophenol–peroxidase system. The concentration dependence and the influence of heat and light on the formation of hydrogen peroxide in water under the influence of dimethylhydrazine at concentrations that are considerably lower than the maximum allowable concentrations were studied and the physico-chemical mechanism of this process was considered. It is supposed that dimethylhy-drazine at ultra-low concentrations is associated with air nanobubbles and represents a long-lived complex, which catalyzes the hydrogen peroxide formation under the influence of heat and light. We propose a new concept of the toxicity of dimethylhydrazine at very low concentrations due to impaired homeostasis of the formation of reactive oxygen species in aqueous solutions that enter humans and animals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

UDMH:

unsymmetrical 1,1-dimethylhydrazine

MAC:

maximum allowable concentration

References

  1. Ya. T. Shatrov, V. I. Bruskov, G, B, Zavilgelsky, et al., New Aspects of Research on the Consequences of Using Heptyl in Rocket and Space Technology (Pelikan, Moscow, 2008) [in Russian].

    Google Scholar 

  2. L. E. Panin and A. Yu. Perova, Byull. Sib. Otd. Ross. Akad. Med. Nauk 1, 124 (2006).

    Google Scholar 

  3. A. D. Smolenkov, I. A. Rodin, and O. A. Shpigun, J. Anal. Chem. 67 (2), 98 (2012).

    Article  Google Scholar 

  4. L. S. Yaguzhinskii, On the Toxicity of Heptyl (Inst. Inorg. Chem., Russ. Acad.Sci., Chernogolovka, 2014) [in Russian].

    Google Scholar 

  5. Yu. I. Misiichuk, G. F. Tereshchenko, G. P. Lebedev, et al., Ekol. Khim. 7, 42 (1998).

    Google Scholar 

  6. G. Ya. Evlashevskii, Byull. Sib. Med. 4, 21 (2002).

    Google Scholar 

  7. L. E. Panin, N. E. Kostina, and L. V. Shestopalova, Byull. Sib. Otd. Ross. Akad. Med. Nauk 4, 73 (2005).

    Google Scholar 

  8. L. E. Panin, E. Yu. Kleimenova, and G. S. Russkikh, Byull. Sib. Otd. Ross. Akad. Med. Nauk 4, 42 (2005).

    Google Scholar 

  9. A Reference Book on Toxicology and Hygienic Norms (MSCs) for Potentially Hazardous Substances, Ed. by V. S. Kushneva and R. B. Gorshkova (AT, Moscow, 1999) [in Russian].

  10. E. E. Sotnikov and A. S. Moskovkin, J. Anal. Chem. 61, 139 (2006).

    Article  Google Scholar 

  11. L. Carlsen, O. A. Kenesova, and S. E. Batyrbekova, Chemosphere 67, 1108 (2007).

    Article  Google Scholar 

  12. G. Lunn and E. B. Sansone, Chemosphere 29, 1577 (1994).

    Article  Google Scholar 

  13. G. L. Elizarova, L. G. Matvienko, O. P. Pestunova, et al., Kinet. Kataliz 39, 49 (1998).

    Google Scholar 

  14. O. P. Pestunova, G. L. Elizarova, Z. R. Ismagilov, et al., Catal. Today 75, 219 (2002).

    Article  Google Scholar 

  15. E. C. Fleming, J. C. Pennington, B. G. Wachob, et al., J. Hazard Mater. 51, 151 (1996).

    Article  Google Scholar 

  16. O. A. Makhotkina, E. V. Kuznetsova, and S. V. Preis, Appl. Catal. B: Environ. 6, 85 (2006).

    Article  Google Scholar 

  17. E. Rotlerts, F. Younger, and S. Frankel, J. Biol. Chem. 191, 277 (1951).

    Google Scholar 

  18. Kh. Avakyan, Farmakol. Toksikol. 53, 70 (1990).

    Google Scholar 

  19. L. S. Yaguzhinskii, V. I. Bruskov, E. G. Smirnova, et al., Dvoinye Tekhnol. 3, 61 (2006).

    Google Scholar 

  20. I. N. Shtarkman, S. V. Gudkov, A. V. Chernikov, et al., Biokhimiya 73, 576 (2008).

    Google Scholar 

  21. S. V. Gudkov, V. I. Bruskov, M. E. Astashev, et al., J. Phys. Chem. B 115, 7693 (2011).

    Article  Google Scholar 

  22. V. I. Bruskov, O. E. Karp, S. A. Garmash, et al., Free Radic. Res. 46, 1280 (2012).

    Article  Google Scholar 

  23. V. I. Bruskov, N. R. Popova, V. E. Ivanov, et al., Biochem. Biophys. Res. Commun. 443, 957 (2014).

    Article  Google Scholar 

  24. A. B. Gapeyev, N. A. Lukyanova, and S. V. Gudkov, Cent. Eur. J. Biol. 9, 915 (2014).

    Google Scholar 

  25. S. V. Gudkov, M. E. Astashev, V. I. Bruskov, et al., Entropy 16, 6166 (2014).

    Article  ADS  Google Scholar 

  26. S. A. Garmash, V. S. Smirnova, O. E. Karp, et al., J. Environ. Radioact. 127, 163 (2014).

    Article  Google Scholar 

  27. S. V. Gudkov, O. E. Karp, S. A. Garmash, et al., Biophysics (Moscow) 57, 1 (2012).

    Article  Google Scholar 

  28. V. I. Bruskov, Zh. K. Masalimov, and A. V. Chernikov, Dokl. Biochem. Biophys. 384, 181 (2002).

    Article  Google Scholar 

  29. V. I. Bruskov, L. V. Malakhova, Z. K. Masalimov, et al., Nucleic Acids Res. 30, 1354 (2002).

    Article  Google Scholar 

  30. S. V. Gudkov, V. E. Ivanov, O. E. Karp, et al., Biophysics (Moscow) 59, 700 (2014).

    Article  Google Scholar 

  31. V. I. Bruskov, S. V. Gudkov, V. S. Senin, et al., in AirSaturated Water: An Open Nonequilibrium, Active Medium, Ed. by A. B. Rubin, E. E. Fesenko, and G. R. Ivanitsky (Sinkhrobuk, Pushchino, 2013), pp. 8–10.

  32. N. F. Bunkin, Zh. Eksp. Teor. Fiz. 101, 512 (1992).

    Google Scholar 

  33. N. F. Bunkin, N. V. Suyazov, A. V. Shkirin, et al., J. Chem. Phys. 130, 134308 (2009).

    Article  ADS  Google Scholar 

  34. M. A. Margulis, Usp. Fiz. Nauk 130, 263 (2000).

    Article  Google Scholar 

  35. V. H. Arakeri, Curr. Sci. 85, 911 (2003).

    Google Scholar 

  36. A. Tomasi, E. Albano, B. Botti, et al., Toxicol. Pathol. 15, 178 (1987).

    Article  Google Scholar 

  37. Y. T. Didenko, W. B. McNamara, and K. S. Suslick, Nature 407, 877 (2000).

    Article  ADS  Google Scholar 

  38. Y. T. Didenko and K. S. Suslick, Nature 418, 394 (2002).

    Article  ADS  Google Scholar 

  39. I. A. Rodin, D. N. Moskvin, A. D. Smolenkov, and O. A. Shpigun, Russ. J. Phys. Chem. A 82 (6), 911 (2008).

    Article  Google Scholar 

  40. A. K. Pikaev, Reaction Capacity of Primary Products of Water Radiolysis (Energoizdat, Moscow, 1982) [in Russian].

    Google Scholar 

  41. N. K. Zenkov, V. Z. Lankin, and E. B. Men’shchikova, Oxidative Stress: Biochemical and Pathophysiological Aspects (MAIK Nauka/Interperiodica, Moscow, 2001) [in Russian].

    Google Scholar 

  42. M. L. Circu and T. Y. Aw, Free Radic. Biol. Med. 48, 749 (2010).

    Article  Google Scholar 

  43. G. B. Zavilgelsky, V. Y. Kotova, and I. V. Manukhov, Mutat. Res. 634, 172 (2007).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. I. Bruskov.

Additional information

Original Russian Text © V.I. Bruskov, L.S. Yaguzhinsky, Z.K. Masalimov, A.V. Chernikov, V.I. Emelyanenko, S.V. Gudkov, 2015, published in Biofizika, 2015, Vol. 60, No. 4, pp. 673–680.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bruskov, V.I., Yaguzhinsky, L.S., Masalimov, Z.K. et al. The continuous generation of hydrogen peroxide in water containing very low concentrations of unsymmetrical dimethylhydrazine. BIOPHYSICS 60, 553–558 (2015). https://doi.org/10.1134/S0006350915040065

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006350915040065

keywords

Navigation