Skip to main content
Log in

The effects of silver nitrate on the phase state of model multibilayer membranes

  • Cell Biophysics
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract

To investigate the effects of silver nitrate (AgNO3) on model lipid membranes, we studied multibilayer membranes based on L-α-dipalmitoylphosphatidylcholine (DPPC) and AgNO3 aqueous solutions in a wide concentration range (up to 30 wt %) using differential scanning calorimetry. It was shown that the presence of AgNO3 leads to both an increase in the main phase transition temperature (T m ) of DPPC multibilayers and the appearance of an additional phase transition peak (T m ), suggesting an increase in both the density and heterogeneity of the lipid bilayer. Since the effect of nitrate ions (NO 3 ) was of the opposite nature (bilayer fluidizing), the integral effect of AgNO3 can be explained solely by the effect of silver ions (Ag+). With increasing AgNO3 concentration, the tendency to opposite changes in T m and Tm peak intensity was observed, so that at approximately 26 wt % AgNO3 the initial peak (T m ) disappeared. In the range of therapeutic Ag+ concentrations (up to 2 wt %), no significant changes in the phase state of model membranes were observed. This can be one of the causes of the absence of a damaging effect of silver-containing drugs on the host cells against the background of a pronounced bactericidal effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

DPPC:

L-α-dipalmitoylphosphatidylcholine

DMPC:

L-α-dimyristoylphosphatidylcholine

DSC:

differential scanning calorimetry

References

  1. E. Sh. Savadyan, V. M. Melnikova, and G. P. Belikova, Antibiotiki Khimioterap. 11, 874 (1989).

    Google Scholar 

  2. H. H. Lara, E. N. Garza-Trevico, L. Ixtepan-Turrent, and D. K. Singh, J. Nanobiotechnology 9, 30 (2011).

    Article  Google Scholar 

  3. A. B. Shcherbakov, Farmatsevt. Zh. 5, 45 (2006).

    Google Scholar 

  4. N. R. Panyala and E. M. Peňa-Méndez, J. Appl. Biomed. 6, 117 (2008).

    Google Scholar 

  5. G. A. Hartung and G. A. Mansoori, J. Nanomater. Mol. Nanotechnol. 2, 3 (2013).

    Google Scholar 

  6. G. McDonnell and A. D. Russell, Clin. Microbiol. Rev. 12 (1), 147 (1999).

    Google Scholar 

  7. P. D. Bragg and D. J. Rainnie, Can. J. Microbiol. 20, 881 (1974).

    Article  Google Scholar 

  8. J. J. Abramson, J. L. Trimm, L. Weden, and G. Salama, Proc. Natl. Acad. Sci. U. S. A. 80 (6), 1526 (1983).

    Article  ADS  Google Scholar 

  9. E. E. Kriss and K. B. Yatsimirskii, Usp. Khim. 35 (2), 347 (1966).

    Article  Google Scholar 

  10. L. A. Kul’skii, Silver Water (Naukova Dumka, Kiev, 1987) [in Russian].

    Google Scholar 

  11. V. S. Bryzgunov, V. N. Lipin, and V. R. Matrozona, Nauch. Tr. Kazan. Med. Inst. 14, 121 (1964).

    Google Scholar 

  12. K. B. Holt and A. J. Bard, Biochemistry 44, 13214 (2005).

    Article  Google Scholar 

  13. G. D. J. Bothun, Nanobiotechnology 6, 13 (2008).

    Article  Google Scholar 

  14. D. S. Orlov, O. V. Shamova, O. Yu. Golubeva, et al., Tsitokiny i Vospalenie 9 (2), 32 (2010).

    Google Scholar 

  15. S. H. Park, S. G. Oh, J. Y. Mun, and S. S. Han, Colloids Surf. B: Biointerfaces 44 (2–3), 117 (2005).

    Article  Google Scholar 

  16. R. Chen, P. Choudhary, R. N. Schurr, et al., Appl. Phys. Lett. 100, 013703 (2012).

    Article  ADS  Google Scholar 

  17. I. Sondi and B. Salopek-Sondi, J. Coll. Interf. Sci. 275, 177 (2004).

    Article  Google Scholar 

  18. K.-J. Kim, W. S. Sung, B. K. Suh, et. al., Biometals 22, 235 (2009).

    Article  Google Scholar 

  19. O. V. Vashchenko, Yu. L. Ermak, and L. N. Lisetski, Biophysics (Moscow) 58 (4), 515 (2013).

    Article  Google Scholar 

  20. I. I. Brekhman, Man and Biologically Active Substances (Nauka, Moscow, 1980) [in Russian].

    Google Scholar 

  21. H. Binder and O. Zschörnig, Chem. Phys. Lipids 115, 39 (2002).

    Article  Google Scholar 

  22. R. Bartucci and L. Sportelli, Biochim. Biophys. Acta: Biomembr. 1195 (2), 229 (1994).

    Article  Google Scholar 

  23. P.-W. Yang, T. L. Lin, Y. Hu, and U-S. Jeng, Chinese J. Phys. 50 (2), 349 (2012).

    Google Scholar 

  24. M. R. R. de Planque and J. A. Killian, Mol. Membr. Biol. 20, 271 (2003).

    Article  Google Scholar 

  25. M. S. Giammarinaro and S. Micciancio, Mol. Cryst. Liq. Cryst. 76, 35 (1981).

    Article  Google Scholar 

  26. S. S. Batsanov, Zh. Struct. Khim. 3, 616 (1962).

    Google Scholar 

  27. R. L. Baldwin, Biophys. J. 71, 2056 (1996).

    Article  ADS  Google Scholar 

  28. P. K. Mukherjee, Liq. Cryst. 22, (3), 239 (1997).

    Article  Google Scholar 

  29. S. S. Botkin, Doctoral Dissertation in Medicine (St. Petersburg, 1898).

    Google Scholar 

  30. A. P. Vinogradov, Tr. Biokhim. Lab. Akad. Nauk SSSR 4, 91 (1938).

    Google Scholar 

  31. I. V. Pyatnitskii and V. V. Sukhan, Analytical Chemistry of Silver (Nauka, Moscow, 1975) [in Russian].

    Google Scholar 

  32. K. D. Collins, Methods 34, 300 (2004).

    Article  Google Scholar 

  33. V. G. Ivkov and G. N. Berestovskii, The Lipid Bilayer of Biological Membranes (Nauka, Moscow, 1982) [in Russian].

    Google Scholar 

  34. B. C. Kone, M. Kaleta, and S. R. Gullans, J. Membr. Biol. 102 (1), 11 (1988).

    Article  Google Scholar 

  35. O. B. Popova, N. M. Sanina, G. N. Likhatskaya, and I. P. Bezverbnaya, Russ. J. Mar. Biol. 34 (3), 179 (2008).

    Article  Google Scholar 

  36. R. B. Gennis, Biomembranes: Molecular Structure and Function (Springer, New York, 1989; Mir, Moscow, 1997).

    Book  Google Scholar 

  37. R. Doerr and W. Bergner, Biochem. Zeitschr. 31, 351 (1922).

    Google Scholar 

  38. C. Peetla, A. Stine, and V. Labhasetwar, Mol. Pharm. 6 (5), 1264 (2009).

    Article  Google Scholar 

  39. Y.-K. Jo, B. H. Kim, and G. Jung, Plant Dis. 93, 1037 (2009).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. V. Vashchenko.

Additional information

Original Russian Text © O.V. Vashchenko, Iu.L. Iermak, A.O. Krasnikova, L.N. Lisetski, 2015, published in Biofizika, 2015, Vol. 60, No. 2, pp. 307–315.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vashchenko, O.V., Iermak, I.L., Krasnikova, A.O. et al. The effects of silver nitrate on the phase state of model multibilayer membranes. BIOPHYSICS 60, 244–250 (2015). https://doi.org/10.1134/S0006350915020207

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006350915020207

Keywords

Navigation