Skip to main content
Log in

Local fractal analysis of noise-like time series by the all-permutations method for 1–115 min periods

Biophysics Aims and scope Submit manuscript

Abstract

The results of the analysis of a 329-per-day time series of the rate fluctuations of 239Pu alphadecay, which was obtained using the developed local fractal analysis of noise-like time series via the all-permutation method (APM) are presented. With the use of this method, a stable frequency structure is revealed in the time series. It is demonstrated that the found set of frequencies coincides with the Earth’s natural oscillations. Studies that analyze the time series of fluctuations in processes of different natures are briefly reviewed. It is shown that the periodicity values found in these works coincide with those that are observed in our experiments, thus indicating the universal nature of this phenomenon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

APM:

All–permutations method

EFOs:

Earth’s free oscillations

References

  1. V. A. Panchelyuga and M.S. Panchelyuga, Biophysics (Moscow) 58 (2), 283 (2013).

    Article  Google Scholar 

  2. V. A. Panchelyuga and M. S. Panchelyuga, Giperkompl. Chisla Geom. Fiz. 11 (21), 107 (2014).

    Google Scholar 

  3. M. M. Dubovikov, N. V. Starchenko, and M. S. Dubovikov, Physica A 339, 591 (2004).

    Article  MathSciNet  ADS  Google Scholar 

  4. M. M. Dubovikov, N. V. Starchenko, Usp. Fiz. Nauk 181 (7), 779 (2011).

    Article  Google Scholar 

  5. M. M. Dubovikov, A. V. Kryanev, N. V. Starchenko, Vestn. RUDN, Ser. Prikl. Komp. Mat. 3 (1), 30 (2004).

    Google Scholar 

  6. N. V. Starchenko, Candidate’s Dissertation in Mathematics and Physics, (Moscow, 2005).

    Google Scholar 

  7. S. E. Shnoll and V. A. Panchelyuga, Mir Izmerenii 6, 49 (2007).

    Google Scholar 

  8. S. E. Shnoll, V. A. Kolombet, E. V. Pozharskii, et al., Usp. Fiz. Nauk 168 (10), 1129 (1998).

    Article  Google Scholar 

  9. S. E. Shnoll, T. A. Zenchenko, K. I.Zenchenko, et al., Usp. Fiz. Nauk 170 (2), 214 (2000).

    Article  Google Scholar 

  10. V. A. Panchelyuga and S. E. Shnoll, Giperkompl. Chisla Geom. Fiz. 3 (6), 188 (2006).

    Google Scholar 

  11. V. A. Panchelyuga, V. A. Kolombet, M. S. Panchelyuga, and S. E. Shnoll, Giperkompl. Chisla Geom. Fiz. 3 (5), 116 (2006).

    Google Scholar 

  12. E. Rutherford, Radioactive Substances and Their Radiations (Cambridge Univ. Press, Cambridge, 1913).

    Google Scholar 

  13. S. E. Rutherford, J. Chadwick, and C. Ellis, Radiations from Radioactive Substances (Cambridge Univ. Press, 1930).

    MATH  Google Scholar 

  14. J. H. Jenkins, E. Fischbach, J. B. Buncher, et al., arXiv:0808.3283v1 [astro-ph] 25 Aug 2008.

    Google Scholar 

  15. J. H. Jenkins, E. Fischbach, J. B. Buncher, et al., Astropart. Phys. 32, 42 (2009).

    Article  ADS  Google Scholar 

  16. E. Fischbach, J. B. Buncher, J. T. Gruenwald, et al., Space Sci. Rev. 145, 285 (2009).

    Article  ADS  Google Scholar 

  17. J. H. Jenkins and E. Fischbach, Astropart. Phys. 31, 407 (2009).

    Article  ADS  Google Scholar 

  18. E. Fischbach, K. J. Chen, R. E. Gold, et al., Astrophys. Space Sci. 337, 39 (2012).

    Article  ADS  Google Scholar 

  19. P. A. Sturrock, G. Steinitz, E. Fischbach, et al., Astropart, Phys. 36, 18 (2012).

    Article  ADS  Google Scholar 

  20. D. E. Krause, B. A. Rogers, E. Fischbach, et al., Astropart. Phys. 36, 51 (2012).

    Article  ADS  Google Scholar 

  21. J. H. Jenkins, K. R. Herminghuysen, Th. E. Blue, et al., Astropart. Phys. 37, 81 (2012).

    Article  ADS  Google Scholar 

  22. P. A. Sturrock, L. Bertello, E. Fischbach, et al., Astropart. Phys. 42, 62 (2013).

    Article  ADS  Google Scholar 

  23. P. A. Sturrock, A. G. Parkhomov, E. Fischbach, and J. H. Jenkins, Astropart. Phys. 35 (11), 755 (2012).

    Article  ADS  Google Scholar 

  24. P. A. Sturrock, E. Fischbach, D. Javorsek II, et al., Astropart. Phys. 59, 47 (2014).

    Article  ADS  Google Scholar 

  25. P. S. Cooper, Astropart. Phys. 31 (4), 267 (2009).

    Article  ADS  Google Scholar 

  26. E. N. Alexeyev, V. V. Alekseenko, Ju. M. Gavriljuk, et al., Astropart. Phys. 46, 23 (2013).

    Article  ADS  Google Scholar 

  27. K. Bikit, J. Nikolov, I. Bikit, et al., Astropart. Phys. 47, 38 (2013).

    Article  ADS  Google Scholar 

  28. K. Kossert and O. J. Nahle, Astropart. Phys. 55, 33 (2014).

    Article  ADS  Google Scholar 

  29. Yu. A. Baurov, Yu. G. Sobolev, Yu. V. Ryabov, and V. F. Kushniruk, Phys. Atom. Nucl. 70 (11), 1825 (2007).

    Article  ADS  Google Scholar 

  30. D. P. Veprev and V. I. Muromtsev, Astropart. Phys. 36, 26 (2012).

    Article  ADS  Google Scholar 

  31. E. M. Lin’kov, Seismic Phenomena (Leningr. Gos. Univ., Leningrad, 1987) [in Russian].

    Google Scholar 

  32. L. N. Petrova, Vulkanol. Seismol. 4–5, 116 (1999).

    Google Scholar 

  33. T. G. Masters and R. Widmer, in Free Oscillations: Frequencies and Attenuations, Ed. by T.J. Ahrens (American Geophysical Union, 1995), pp. 104–125.

  34. R. Buland, J. Berger, and F. Gilbert, Nature 277 (5695), 358 (1979).

    Article  ADS  Google Scholar 

  35. G. C. Brown and A. E. Mussett, The Inaccessible Earth (Allen & Unwin, 1982; Mir, Moscow, 1984).

    Google Scholar 

  36. L. N. Rykunov. O. B. Khavroshkin, and V. V. Tsyplakov, Dokl. Akad. Nauk SSSR 238 (2), 303 (1978).

    Google Scholar 

  37. Yu. V. Antonov, I. Yu. Antonova, A. K. Pybin, and G. G. Shchelochkov, Izv. Vuzov, Geol. Razvedka 6, 51 (2010).

    Google Scholar 

  38. K. Aki and P. G. Richards, Quantitative Seismology (Freeman, San Francisco, 1980; Mir, Moscow, 1982), Vol. 1.

  39. Self-Oscillations of the Earth (Mir, Moscow, 1964) [in Russian].

  40. E. M. Lin’kov, L. N. Petrova, N. G. Savina, and T. B. Yanovskaya, Dokl. Akad. Nauk SSSR 262 (2), 321 (1982).

    Google Scholar 

  41. L. N. Petrova, Biofizika 37 (3), 508 (1992).

    MathSciNet  Google Scholar 

  42. L. M. Antonova and N. G. Savina, in Applications of Long-Base Laser Interferometers in Geophysics (Vladivostok, 1978) [in Russian].

    Google Scholar 

  43. O. B. Khavroshkin, Some Problems in Nonlinear Seismology (IOFZ RAN, Moscow, 1999) [in Russian].

    Google Scholar 

  44. E. M. Lin’kov and S. Ya Tipisev, in Dynamic Processes in Discrete Geophysical Systems (Vladivostok, 1986) [in Russian].

    Google Scholar 

  45. S. N. Shapovalov, E. S. Gorshkov, T. D. Borisova, V. V. Sokolovskii, and O. A. Troshichev, Biophysics (Moscow) 46 (5), 777 (2001).

    Google Scholar 

  46. N. V. Klochek, L. E. Palamarchuk, L. A. Plyusnina, and M. V. Nikonova, Biofizika 37 (4), 656 (1992).

    Google Scholar 

  47. N. V. Klochek, L. E. Palamarchuk, and M. V. Nikonova, Biofizika 40 (4), 889 (1995).

    Google Scholar 

  48. G. I. Dolgikh, U. Kh. Kopvillem, O. B. Khavroshkin, V. V. Tsyplakov, Available from VINITI, No. 3070–79 (Moscow, 1979).

    Google Scholar 

  49. E. S. Gorshkov, S. N. Shapovalov, V. V. Sokolovskii, and O. A. Troshichev, Biophysics (Moscow) 45 (5), 920 (2000).

    Google Scholar 

  50. N. V. Klochek and M. V. Nikonova, Studies on Geomagnetosm, Aeronomics, and Solar Physics (Nauka, Moscow, 1988) [ in Russian].

    Google Scholar 

  51. Qian-Shen Wang, Xin-she Yang, Chuan-zhen Wu, et al., Phys. Rev. D 62, 041101 (2000).

    Article  ADS  Google Scholar 

  52. S. W. Zhou and B. J. Huang, Il Nuovo Cimento 15C (2), 133 (1992).

    Article  ADS  Google Scholar 

  53. V. S. Kazachok, O. B. Khavroshkin, V. V. Tsyplakov, behavior of Atomic and Mechanical Oscillators during Solar Eclipse (VNIIMS, 1976) [in Russian].

    Google Scholar 

  54. O. B. Khavroshkin and V. V. Tsyplakov, Inzh. Fiz. 3, 25 (2014).

    Google Scholar 

  55. A. V. Bruns and V. M. Vladimirskii, Izv. Krymsk. Astrofiz. Observ. 102, 164 (2006).

    Google Scholar 

  56. V. M. Vladimirskii, Biofizika 37 (3), 500 (1992).

    Google Scholar 

  57. A. V. Drozdov and T. P. Nagorskaya, Biophysics (Moscow) 59 (6), 973 (2014). http://www.biophys.ru/archive/spb2013/proc-p19.pdf

    Article  Google Scholar 

  58. A. V. Drozdov, personal communication.

  59. F. R. Chernikov, Biofizika 31 (4), 596 (1986).

    MathSciNet  Google Scholar 

  60. F. R. Chernikov, Biofizika 35 (5), 711 (1990).

    MathSciNet  Google Scholar 

  61. F. R. Chernikov, Biofizika 35 (5), 717 (1990).

    MathSciNet  Google Scholar 

  62. V. V. Aleksandrov, The Ecological Role of Electromagnetism (Politekhn. Univ., St. Petersburg, 2006) [in Russian].

    Google Scholar 

  63. V. S. Martynyuk, Biophysics (Moscow) 48 (5), 747 (1998).

    MathSciNet  Google Scholar 

  64. T. A. Zenchenko, A. A. Medvedeva, N. I. Khorseva, and T. K. Breus, Geofiz. Prots. Biosfera 12 (4), 73 (2013).

    Google Scholar 

  65. T. A. Zenchenko, P. M. Nagorskii, T. K. Breus, and S. V. Smirnov, in Abstr. IV Int. Conf. “Man and Electromagnetic Fields” (Sarov, 2013), p. 39.

    Google Scholar 

  66. T. A. Zenchenko, P. M. Nagorskii, T. K. Breus, S. V. Smirnov, in Abstr. X Int. Conf. “Space and Biosphere (Koktebel, the Crimea, 2013), p. 187.

    Google Scholar 

  67. T. A. Zenchenko, Effect of Space Weather in Human Health in Space and on the Earth, Proc. Int. Conf. (Moscow, 2012), pp. 120–121.

    Google Scholar 

  68. U. Kh. Kopvillem, R. Z. Sharipov, A. M. Zapol’skii, and N. A. Aisdaicher, Biofizika 37 (4), 643 (1992).

    Google Scholar 

  69. G. I. Bortnikova, Biofizika 37 (3), 533 (1992).

    Google Scholar 

  70. M. V. Fedorov, E. V. Deshcherevskaya, S. N. Shapovalov, E. S. Gorshkov, and O. A. Troshichev, Biophysics (Moscow) 46 (5), 753 (2001).

    Google Scholar 

  71. O. B. Khavroshkin and V. V. Tsyplakov, Inzh. Fiz. 8, 53 (2013).

    Google Scholar 

  72. O. Khavroshkin and V. Tsyplakov, Natural Sci. 3 (8), 733 (2011).

    Article  Google Scholar 

  73. O. B. Khavroshkin and V. V. Tsyplakov, Natural Sci. 5 (9), 1001 (2013).

    Article  Google Scholar 

  74. E. N. Avdonina and V. B. Lukyanov, Biofizika 40 (4), 876 (1995).

    Google Scholar 

  75. Yu. A. Baurov, N. A. Demchuk, A. Yu. Baurov, et al., Prikl. Fiz. 5, 12 (2011).

    Google Scholar 

  76. A. V. Shabel’nikov and K. G. Kir’yanov, Biophysics (Moscow) 43 (5), 829 (1998).

    Google Scholar 

  77. A. V. Shabel’nikov, Biofizika 37 (3), 572 (1992).

    Google Scholar 

  78. V. M. Vladimirskii, Biofizika 37 (3), 500 (1992).

    Google Scholar 

  79. V. M. Vladimirskii, Vestn. Kaluzhsk. Univ. 1, 25 (2007).

    Google Scholar 

  80. D. G. Pavlov, Giperkompl. Chisla Geom. Fiz. 1 (1), 5 (2004).

    Google Scholar 

  81. D. G. Pavlov, Giperkompl. Chisla Geom. Fiz. 1 (1), 20 (2004).

    Google Scholar 

  82. D. G. Pavlov, Giperkompl. Chisla Geom. Fiz. 1 (1), 33 (2004).

    Google Scholar 

  83. G. I. Garas’ko, Giperkompl. Chisla Geom. Fiz. 1 (1), 75 (2004).

    Google Scholar 

  84. S. V. Lebedev, Giperkompl. Chisla Geom. Fiz. 1 (1), 68 (2004).

    Google Scholar 

  85. S. V. Siparov, Giperkompl. Chisla Geom. Fiz. 2 (4), 51 (2005).

    Google Scholar 

  86. R. G. Zaripov, Giperkompl. Chisla Geom. Fiz. 3 (5), 27 (2006).

    Google Scholar 

  87. G. I. Garas’ko, A Primer in Finsler Geometry for Physicists (Tetru, Moscow, 2009) [in Russian].

    Google Scholar 

  88. D. G. Pavlov and S. S. Kokarev, Giperkompl. Chisla Geom. Fiz. 5 (10), 3 (2008).

    Google Scholar 

  89. D. G. Pavlov, Giperkompl. Chisla Geom. Fiz. 6 (13), 3 (2010).

    Google Scholar 

  90. D. G. Pavlov and S. S. Kokarev, Giperkompl. Chisla Geom. Fiz. 6 (13), 78 (2010).

    Google Scholar 

  91. D. G. Pavlov and S. S. Kokarev, Giperkompl. Chisla Geom. Fiz. 16 (2011).

  92. D. G. Pavlov and S. S. Kokarev, Giperkompl. Chisla Geom. Fiz. 7 (14), 11 (2010).

    Google Scholar 

  93. S. S. Kokarev, Giperkompl. Chisla Geom. Fiz. 9 (17), 175 (2012).

    Google Scholar 

  94. D. G. Pavlov, S. S. Kokarev, M. S. Panchelyuga, and V. A. Panchelyuga, Bull. Transilv. Univ. Brasov, Ser. III: Math., Informatics, Phys. 5 (54), 53 (2012).

    MathSciNet  Google Scholar 

  95. D. G. Pavlov, S. S. Kokarev, M. S. Panchelyuga, and V. A. Panchelyuga, Prostr. Vremya 10 (4), 50 (2012).

    Google Scholar 

  96. D. G. Pavlov, M. S. Panchelyuga, and V. A. Panchelyuga, Giperkompl. Chisla Geom. Fiz. 9 (17), 162 (2012).

    Google Scholar 

  97. D. G. Pavlov, M. S. Panchelyuga, and V. A. Panchelyuga, Metafizika 1, 151 (2014).

    Google Scholar 

  98. D. G. Pavlov, M. S. Panchelyuga, S. F. Chalkin, and V. A. Panchelyuga, Giperkompl. Chisla Geom. Fiz. 11 (21), 96 (2014).

    Google Scholar 

  99. H. Muller, Prog. Phys. 2, 72 (2009).

    Google Scholar 

  100. H. Muller, Prog. Phys. 1, 62 (2010).

    Google Scholar 

  101. H. Muller, Prog. Phys. 3, 61 (2010).

    Google Scholar 

  102. A. Ries and M. V. L. Fook, Prog. Phys. 1, 103 (2011).

    Google Scholar 

  103. V. A. Panchelyuga and M. S. Panchelyuga, Prog. Phys. 4, 48 (2012).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Panchelyuga.

Additional information

Original Russian Text © V.A. Panchelyuga, M.S. Panchelyuga, 2015, published in Biofizika, 2015, Vol. 60, No. 2, pp. 395–410.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Panchelyuga, V.A., Panchelyuga, M.S. Local fractal analysis of noise-like time series by the all-permutations method for 1–115 min periods. BIOPHYSICS 60, 317–330 (2015). https://doi.org/10.1134/S0006350915020141

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006350915020141

Keywords

Navigation