Skip to main content
Log in

Effect of mutation Arg91Gly on the thermal stability of β-tropomyosin

  • Molecular Biophysics
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract

The mutation Arg91Gly (R91G) in β-tropomyosin (β-TM) is known to cause distal arthrogryposis, a severe congenital disorder of muscle tissues. The influence of this mutation in β-TM on its structure and thermal denaturation was demonstrated. It was shown by the differential scanning calorimetry and circular dichroism that this point mutation dramatically decreased the thermal stability of the significant part of the β-TM (about a half of the molecule). This part of the β-TM molecule carrying R91G mutation unfolds at ∼28°C, i.e., at a much lower temperature than the other part of the molecule, which melts at ∼40°C. The data of the differential scanning calorimetry were compared with the results of temperature dependence of pyrene eximer fluorescence, which decreased upon the dissociation of two β-TM chains in the region of pyrene-labeled Cys-36. This comparison allowed one to conclude that this thermal transition reflected the thermal unfolding of the whole N-terminal part of β-TM. Interestingly, the destabilizing effect of Arg91Gly mutation spread for a rather long distance along the tropomyosin coiled-coil indicating a high cooperativity of the thermal denaturation within this part of β-TM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

DSC:

differential scanning calorimetry

CD:

circular dichroism

β-TM:

β-tropomyosin

R91G:

mutation Arg91Gly in β-TM

References

  1. S. V. Perry, J. Muscle Res. Cell Motil. 22, 5 (2001).

    Article  Google Scholar 

  2. S. S. Sung, A. E. Brassington, K. Grannatt, et al., Am. J. Hum. Genet. 72, 681 (2003).

    Article  Google Scholar 

  3. E. Kremneva, S. Boussouf, O. Nikolaeva, et al. Biophys. J. 87, 3922 (2004).

    Article  Google Scholar 

  4. M. Mirza, P. Robinson, E. Kremneva, et al. J. Biol. Chem. 282, 13487 (2007).

  5. F. W. Studier, A. H. Rosenberg, J. J. Dunn, and J. W. Dubendorff, Methods Enzymol. 185, 60 (1990).

    Article  Google Scholar 

  6. P. Robinson, L. Lipscomb, L. Preston, et al., FASEB J. 21, 896 (2007).

    Article  Google Scholar 

  7. E. Kremneva, O. Nikolaeva, R. Maytum, et al., FEBS J. 273, 588 (2006).

    Article  Google Scholar 

  8. Y. Ishii and S. S. Lehrer, Biochemistry 29, 1160 (1990).

    Article  Google Scholar 

  9. M. M. Bradford, Anal. Biochem. 72, 248 (1976).

    Article  Google Scholar 

  10. A. I. Dragan and P. L. Privalov, J. Mol. Biol. 343, 371 (2002).

    Article  Google Scholar 

  11. P. W. Gunning, G. Schevzov, A. J. Kee, and E. C. Hardeman, Trends Cell Biol. 15, 333 (2005).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. A. Nevzorov.

Additional information

Original Russian Text © I.A. Nevzorov, C.S. Redwood, D.I. Levitsky, 2008, published in Biofizika, 2008, Vol. 53, No. 6, pp. 917–921.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nevzorov, I.A., Redwood, C.S. & Levitsky, D.I. Effect of mutation Arg91Gly on the thermal stability of β-tropomyosin. BIOPHYSICS 53, 479–481 (2008). https://doi.org/10.1134/S0006350908060018

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006350908060018

Key words

Navigation