Skip to main content
Log in

Studies on the structure of human coronary vasculature

  • Complex Systems Biophysics
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract

Based on morphometric data, we calculate the structural parameters of the coronary vasculature as an optimal branching bed. We show (i) significant correlations between the diameters of the larger daughter and the parent vessel and between the diameter of the smaller daughter vessel and the asymmetry coefficient; (ii) differences in the structural parameters for two types of artery that deliver and distribute blood in the cardiac muscle; and (iii) the length-diameter relationships for different arteries. The coronary vasculature is characterized by asymmetrical branching and thus should be modeled with self-similar asymmetrical tree-like systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. A. E. Flynn, D. L. Coggins, M. Goto, et al., Amer. Physiol. 262, 1759 (1992).

    Google Scholar 

  2. J. A. E. Spaan, P. W. Breuls, and J. D. Laird, Circ. Res. 49, 584 (1981).

    Google Scholar 

  3. Yi-Hui Sun, T. J. Anderson, K. H. Parker, and J. V. Tyberg, Amer. J. Physiol. 286, 1590 (2004).

    Google Scholar 

  4. G. S. Kassab, E. Pallencaoe, A. Schatz, and Y.C. Fung, Amer. J. Physiol. 273, 2832 (1997).

    Google Scholar 

  5. G. S. Kassab, J. Berkley, and Y. C. Fung, Ann. Biomed. Eng. 25, 204 (1997).

    Article  Google Scholar 

  6. J. S. Parker, Ch. B. Cave, J. L. Adrell, et al., J. Appl. Physiol. 83, 1370 (1997).

    Google Scholar 

  7. D. A. Beard and J. B. Bassingthwaighte, J. Vasc. Res. 37, 282 (2000).

    Article  Google Scholar 

  8. M. Marxen and R. M. Henkelman, Amer. J. Physiol. 284, 1848 (2003).

    Google Scholar 

  9. J. Meier, M. Kleen and K. Messmer, Bull. Math. Biol. 66, 1155 (2004).

    Article  Google Scholar 

  10. W. Schreiner, F. Neumann, M. Neumann, et al., J. Gen. Physiol. 109, 129 (1997).

    Article  Google Scholar 

  11. J. H. Van Beek, S. A. Roger, and Bassingthwaighte, Amer. J. Physiol. 257, 1670 (1989).

    Google Scholar 

  12. S. Aharinejad, W. Schreiner, and F. Neumann, Anat. Rec. 251, 50 (1998).

    Article  Google Scholar 

  13. M. Zamir, S. Phipps, B. L. Langille, and T. H. Wonnacott, Can. J. Physiol. Pharmacol. 62, 1453 (1984).

    Google Scholar 

  14. M. Zamir and H. Chee, Canad. J. Physiol. Pharmacol. 64, 661 (1986).

    Google Scholar 

  15. M. Zamir and H. Chee, Blood Vessels. 24, 76 (1987).

    Google Scholar 

  16. M. Zamir, J. Gen. Physiol. 91, 725 (1988).

    Article  Google Scholar 

  17. M. H. Friedman and Z. Ding, Biomech. 31, 273 (1998).

    Article  Google Scholar 

  18. C. D. Murray, Proc. Natl. Acad. Sci. USA 12, 207 (1926).

    Article  ADS  Google Scholar 

  19. M. La Barbera, Science 249, 992 (1990).

    Article  ADS  Google Scholar 

  20. Y. Zhou, G. S. Kassab, and S. Molloi, Phys. Med. Biol. 44, 2929 (1999).

    Article  Google Scholar 

  21. M. Zamir and M. D. Silver, Canad. J. Cardiol. 1, 363 (1985).

    Google Scholar 

  22. Y. Zhou, G. S. Kassab, and S. Molloi, Phys. Med. Biol. 21, 977 (2002).

    Google Scholar 

  23. M. H. Friedman, A. M. Brinkman, J. J. Qin, and W. A. Seed, Atherosclerosis 25, 193 (1993).

    Article  Google Scholar 

  24. R. McKay, R. H. Anderson, and A. Smith, J. Thorac. Cardiovasc. Surg. 111, 988 (1996).

    Article  Google Scholar 

  25. J. M. Downey and E. S. Kirk, Circ. Res. 36, 753 (1975).

    Google Scholar 

  26. R. Krams, P. Sipkema, and N. Westerhof, Amer. J. Physiol. 257, 1471 (1989).

    Google Scholar 

  27. M. Ye. Bondarenko and N. N. Kizilova, Russian J. Biomech. 4, 52 (2002).

    Google Scholar 

  28. N. N. Kizilova, in Proc. of II international conference on computational bioengineering, Eds. by H. Rodrigues, M. Cerrolaza, M. Doblare, J. Ambrosio, M. Viceconti (IST Press, Lisboa, 2005), pp. 412–421.

    Google Scholar 

  29. N. N. Kizilova, in Proc. of the 1-st Intern. Conf. on Complex Medical Engineering, (Japan, 2005), pp. 287–292.

  30. R. Rosen, Optimality Principle in Biology (Mir, Moscow, 1969) [in Russian].

    Google Scholar 

  31. D. J. Brown, IEEE Trans. BME. 43, 715 (1996).

    Article  Google Scholar 

  32. K. A. Shoshenko, Architectonics of the Blood Flow Bed (Nauka, Novosibirsk, 1982) [in Russian].

    Google Scholar 

  33. G. S. Kassab and Y. C. Fung, Ann. Biomed. Eng. 23, 13 (1995).

    Article  Google Scholar 

  34. C. A. Dawson, G. S. Krenz, K. L. Karau, et al., J. Appl. Physiol. 86, 569 (1999).

    Google Scholar 

  35. N. N. Kizilova, Izv. RAN, Ser. MZhG No. 5, 127 (2003).

  36. Y. Y. Wang, W. C. Lia, H. Hsiu, et al., IEEE Trans. BME 47, 313 (2000).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © O.K. Zenin, N.N. Kizilova, E.N. Filippova, 2007, published in Biofizika, 2007, Vol. 52, No. 5, pp. 924–930.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zenin, O.K., Kizilova, N.N. & Filippova, E.N. Studies on the structure of human coronary vasculature. BIOPHYSICS 52, 499–503 (2007). https://doi.org/10.1134/S0006350907050089

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006350907050089

Key words

Navigation