Skip to main content
Log in

Luminol-enhanced chemiluminescence of rabbit polymorphonuclear leukocytes: The nature of oxidants that directly cause luminol oxidation

Biophysics Aims and scope Submit manuscript

Abstract

In this study, we investigated the pathways (including the formation of hydroxyl radicals and chloramines) leading to luminol chemiluminescence induced by hypochlorite generated in a suspension of stimulated rabbit polymorphonuclear leukocytes. Chemiluminescence of leukocytes stimulated by phorbol myristate acetate, which was enhanced by luminol (0.02 mM), did not change in the presence of dimethyl sulfoxide at moderate concentrations (0.02–2.6 mM), under which the latter should manifest the specific ability to scavenge hydroxyl radicals. This indicates that stimulation of polymorphonuclear leukocytes is not accompanied by the generation of hydroxyl radicals with the involvement of superoxide anion and hypochlorite synthesized by myeloperoxidase. At high concentrations of dimethyl sulfoxide (260 mM), chemiluminescence markedly declined because dimethyl sulfoxide directly reacts with hypochlorite. The luminol emission intensity considerably increased after its addition to a suspension of leukocytes that were preliminarily stimulated for 10 min. This effect was caused by the accumulation of hydrogen peroxide rather than chloramines. Exogenous amino acids and taurine at high concentrations (3–15 mM) quench chemiluminescence. All these data indicate that chemiluminescence in the system studied is largely determined by the direct initial reaction of hypochlorite with luminol, the emission intensity increasing as a result of oxidation of luminol transformation products by hydrogen peroxide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Abbreviations

MPO:

myeloperoxidase

PMA:

phorbol 12-myristate 13-acetate

DMSO:

dimethyl sulfoxide

References

  1. L. R. DeChatelet, G. D. Long, P. S. Shirley, et al., J. Immun. 129, 1589–1593 (1982).

    Google Scholar 

  2. E. L. Thomas, P. M. Bozeman, M. M. Jefferson, and C. C. King, J. Biol. Chem. 270, 2906–2913 (1995).

    Article  Google Scholar 

  3. B. Davis and S. W. Edwards, J. Biolumin. Chemilumin. 7, 229–238 (1992).

    Article  Google Scholar 

  4. S. Makimura and M. Sawaki, J. Vet. Med. Sci. 54, 63–67 (1992).

    Google Scholar 

  5. M. A. Murina, D. I. Roshchupkin, N. N. Kravchenko, et al., Biofizika 42(6), 1279–1285 (1997).

    Google Scholar 

  6. M. A. Murina, N. S. Belakina, and D. I. Roshchupkin, Biofizika 49(6), 1099–1105 (2004).

    Google Scholar 

  7. K. Faulkner and I. Fridovich, Free Radic. Biol. Med. 15, 447–451 (1993).

    Article  Google Scholar 

  8. G. Merenyi, J. Lind, and T. E. Eriksen, J. Am. Chem. Soc. 108, 7716–7726 (1986).

    Article  Google Scholar 

  9. G. Merenyi, J. Lind, and T. E. Eriksen, J. Biolumin. Chemilumin. 5(1), 53–56 (1990).

    Article  Google Scholar 

  10. P. S. Francis, N. W. Barnett, S. W. Lewis, and K. F. Lim, Luminescence 19, 94–115 (2004).

    Article  Google Scholar 

  11. P. D. Brown and G. B. Robinson, Inflammation 11, 95–110 (1987).

    Article  Google Scholar 

  12. B. Davies and S. W. Edwards, Biochem. J. 258, 801–806 (1989).

    Google Scholar 

  13. A. J. Kettle, C. A. Gedye, M. B. Hamption, and Ch. C. Winterbourn, Biochem. J. 303, 559–563 (1995).

    Google Scholar 

  14. L. P. Candeias, K. B. Patel, M. R. L. Stratford, and P. Wardman, FEBS Lett. 333, 151–153 (1993).

    Article  Google Scholar 

  15. E. Sh. Yakutova, E. S. Dremina, S. A. Evgina, et al., Biofizika 39(2), 275–279 (1994).

    Google Scholar 

  16. K. Sukurai, H. Sasabe, T. Koga, and T. Konishi, Free Radic. Res. 38, 487–494 (2004).

    Article  Google Scholar 

  17. V. B. Bhat and K. M. Madyastha, Biochem. Biophys. Res. Commun. 288, 1212–1217 (2001).

    Article  Google Scholar 

  18. D. I. Roshchupkin, N. A. Chudina, and M. A. Murina, Biofizika 47(1), 27–30 (2002).

    Google Scholar 

  19. D. I. Roshchupkin, N. A. Chudina, and M. A. Murina, Biofizika 47(2), 211–218 (2002).

    Google Scholar 

  20. J. M. Zgliczynski, E. Olszowska, S. Olszowski, et al., Int. J. Biochem. 17, 515–519 (1985).

    Article  Google Scholar 

  21. S. Olszowski, E. Olszowska, T. Stelmaszynska, and A. Krawczyk, Luminescence 14, 139–145 (1999).

    Article  Google Scholar 

  22. E. P. Brestel, Biochem. Biophys. Res. Commun. 126, 482–488 (1985).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © D.I. Roshchupkin, N.S. Belakina, M.A. Murina, 2006, published in Biofizika, 2006, Vol. 51, No. 1, pp. 99–107.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roshchupkin, D.I., Belakina, N.S. & Murina, M.A. Luminol-enhanced chemiluminescence of rabbit polymorphonuclear leukocytes: The nature of oxidants that directly cause luminol oxidation. BIOPHYSICS 51, 79–86 (2006). https://doi.org/10.1134/S000635090601012X

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S000635090601012X

Key words

Navigation