Skip to main content
Log in

Mitochondria as a signaling Hub and target for phenoptosis shutdown

  • Review
  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Mitochondria have long been studied as the main energy source and one of the most important generators of reactive oxygen species in the eukaryotic cell. Yet, new data suggest mitochondria serve as a powerful cellular regulator, pathway trigger, and signal hub. Some of these crucial mitochondrial functions appear to be associated with RNP-granules. Deep and versatile involvement of mitochondria in general cellular regulation may be the legacy of parasitic behavior of the ancestors of mitochondria in the host cells. In this regard, we also discuss here the perspectives of using mitochondria-targeted compounds for systemic correction of phenoptotic shifts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Emster, L., and Schartz, G. (1981) Mitochondria: a historical review, J. Cell Biol., 91, 227–255.

    Article  Google Scholar 

  2. Skulachev, V. P. (2005) How to clean the dirtiest place in the cell: cationic antioxidants as intramitochondrial ROS scavengers, IUBMB Life, 57, 305–310.

    Article  CAS  PubMed  Google Scholar 

  3. Skulachev, V. P. (2009) How to cancel the organism aging program? Ros. Khim. Zh., 53, 125–140.

    CAS  Google Scholar 

  4. Skulachev, V. P. (2011) Aging as a particular case of phenoptosis, the programmed death of an organism (a response to Kirkwood and Melov “On the programmed/non-programmed nature of ageing within the life history”), Aging (Albany, N. Y.), 3, 1120–1123.

    Google Scholar 

  5. Skulachev, V. P. (2012) What is phenoptosis and how to fight it? Biochemistry (Moscow), 77, 689–706.

    CAS  PubMed  Google Scholar 

  6. Schapira, A. H. (2006) Mitochondrial disease, Lancet, 368, 70–82.

    Article  CAS  PubMed  Google Scholar 

  7. Otten, A. B., and Smeets, H. J. (2015) Evolutionary defined role of the mitochondrial DNA in fertility, disease and ageing, Hum. Reprod. Update, 21, 671–689.

    Article  PubMed  Google Scholar 

  8. Govindaraj, P., Khan, N. A., Gopalakrishna, P., Chandra, R. V., Vanniarajan, A., Reddy, A. A., Singh, S., Kumaresan, R., Srinivas, G., Singh, L., and Thangaraj, K. (2011) Mitochondrial dysfunction and genetic heterogeneity in chronic periodontitis, Mitochondrion, 11, 504–512.

    Article  CAS  PubMed  Google Scholar 

  9. Schulz, J. B., Lindenau, J., Seyfried, J., and Dichgans, J. (2000) Glutathione, oxidative stress and neurodegeneration, Eur. J. Biochem., 267, 4904–4911.

    Article  CAS  PubMed  Google Scholar 

  10. Mariani, E., Polidori, M. C., Cherubini, A., and Mecocci, P. (2005) Oxidative stress in brain aging, neurodegenerative and vascular diseases: an overview, J. Chromatogr. B Anal. Technol. Biomed. Life Sci., 827, 65–75.

    Article  CAS  Google Scholar 

  11. Koopman, W. J., Distelmaier, F., Smeitink, J. A., and Willems, P. H. (2013) OXPHOS mutations and neurodegeneration, EMBO J., 32, 9–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Avila, J. (2010) Common mechanisms in neurodegeneration, Nat. Med., 16, 1372.

    Article  CAS  PubMed  Google Scholar 

  13. Filosto, M., Scarpelli, M., Cotelli, M. S., Vielmi, V., Todeschini, A., Gregorelli, V., Tonin, P., Tomelleri, G., and Padovani, A. (2011) The role of mitochondria in neurodegenerative diseases, J. Neurol., 258, 1763–1774.

    Article  CAS  PubMed  Google Scholar 

  14. Zhu, X., Perry, G., Smith, M. A., and Wang, X. (2013) Abnormal mitochondrial dynamics in the pathogenesis of Alzheimer’s disease, J. Alzheimer’s Dis., 33, S253–S262.

    Google Scholar 

  15. Bonda, D. J., Wang, X., Perry, G., Nunomura, A., Tabaton, M., Zhu, X., and Smith, M. A. (2010) Oxidative stress in Alzheimer’s disease: a possibility for prevention, Neuropharmacology, 59, 290–294.

    Article  CAS  PubMed  Google Scholar 

  16. Skulachev, V. P. (2007) A biochemical approach to the problem of aging: “megaproject” on membrane-penetrating ions. The first results and prospects, Biochemistry (Moscow), 72, 1385–1396.

    Article  CAS  Google Scholar 

  17. Anisimov, V. N., Egorov, M. V., Krasilshchikova, M. S., Lyamzaev, K. G., Manskikh, V. N., Moshkin, M. P., Novikov, E. A., Popovich, I. G., Rogovin, K. A., Shabalina, I. G., Shekarova, O. N., Skulachev, M. V., Titova, T. V., Vygodin, V. A., Vyssokikh, M. Y., Yurova, M. N., Zabezhinsky, M. A., and Skulachev, V. P. (2011) Effects of the mitochondria-targeted antioxidant SkQ1 on lifespan of rodents, Aging (Albany, N. Y.), 3, 1110–1119.

    CAS  Google Scholar 

  18. Neroev, V. V., Archipova, M. M., Bakeeva, L. E., Fursova, A. Zh., Grigorian, E. N., Grishanova, A. Yu., Iomdina, E. N., Ivashchenko, Zh. N., Katargina, L. A., Khoroshilova Maslova, I. P., Kilina, O. V., Kolosova, N. G., Kopenkin, E. P., Korshunov, S. S., Kovaleva, N. A., Novikova, Yu. P., Philippov, P. P., Pilipenko, D. I., Robustova, O. V., Saprunova, V. B., Senin, I. I., Skulachev, M. V., Sotnikova, L. F., Stefanova, N. A., Tikhomirova, N. K., Tsapenko, I. V., Shchipanova, A. I., Zinovkin, R. A., and Skulachev, V. P. (2008) Mitochondria-targeted plastoquinone derivatives as tools to interrupt execution of the aging program. 4. Age-related eye disease. SkQ1 returns vision to blind animals, Biochemistry (Moscow), 73, 1317–1328.

    Article  CAS  Google Scholar 

  19. Khrenkova, V. V., and Aleksandrova, A. A. (2013) Ribonucleoprotein compartments of the eukaryotic cell, Valeology, 4, 19–28.

    Google Scholar 

  20. Huang, L., Mollet, S., Souquere, S., Le Roy, F., Ernoult Lange, M., Pierron, G., Dautry, F., and Weil, D. (2011) Mitochondria associate with P-bodies and modulate microRNA-mediated RNA interference, J. Biol. Chem., 286, 24219–24230.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ernoult-Lange, M., Benard, M., Kress, M., and Weil, D. (2012) P-bodies and mitochondria: which place in RNA interference? Biochimie, 94, 1572–1577.

    Article  CAS  PubMed  Google Scholar 

  22. Cougot, N., Cavalier, A., Thomas, D., and Gillet, R. (2012) The dual organization of P-bodies revealed by immunoelectron microscopy and electron tomography, J. Mol. Biol., 420, 17–28.

    Article  CAS  PubMed  Google Scholar 

  23. Aizer, A., and Shav-Tal, Y. (2008) Intracellular trafficking and dynamics of P bodies, Prion, 2, 131–134.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Nijjar, S., and Woodland, H. R. (2013) Protein interactions in Xenopus germ plasm RNP particles, PLoS One, 12, e80077.

    Article  Google Scholar 

  25. Zolotukhin, P., Kozlova, Y., Dovzhik, A., Kovalenko, K., Kutsyn, K., Aleksandrova, A., and Shkurat, T. (2013) Oxidative status interactome map: towards novel approaches in experiment planning, data analysis, diagnostics and therapy, Mol. Biosyst., 9, 2085–2096.

    Article  CAS  PubMed  Google Scholar 

  26. Lo, S. C., and Hannink, M. (2008) PGAM5 tethers a ternary complex containing Keap1 and Nrf2 to mitochondria, Exp. Cell Res., 314, 1789–1803.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Niture, S. K., Jain, A. K., Shelton, P. M., and Jaiswal, A. K. (2011) Src subfamily kinases regulate nuclear export and degradation of transcription factor Nrf2 to switch off Nrf2mediated antioxidant activation of cytoprotective gene expression, J. Biol. Chem., 286, 28821–28832.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Belanova, A. A., Lebedeva, Yu. A., Kuzminova, O. N., Zolotukhin, P. V., Chmykhalo, V. K., Korihfskaya, S. A., Makarenko, M. S., and Aleksandrova, A. A. (2014) Activator protein 1: structure, function and role in the human oxidative status, Valeologiya, 3, 11–20.

    Google Scholar 

  29. Masuko, U.-F., Wayne, R. A., Akers, M., and Griendling, K. K. (1998) p38 mitogen-activated protein kinase is a critical component of the redox-sensitive signaling pathways activated by angiotensin II. Role in vascular smooth muscle cell hypertrophy, J. Biol. Chem., 273, 15022–15029.

    Article  Google Scholar 

  30. Kyriakis, J. M., Banerjee, P., Nikolakaki, E., Dai, T., Rubie, E. A., Ahmad, M. F., Avruch, J., and Woodgett, J. R. (1994) The stress-activated protein kinase subfamily of c-Jun kinases, Nature, 369, 156–160.

    Article  CAS  PubMed  Google Scholar 

  31. Psarra, A. M., and Sekeris, C. E. (2011) Glucocorticoids induce mitochondrial gene transcription in HepG2 cells: role of the mitochondrial glucocorticoid receptor, Biochim. Biophys. Acta, 1813, 1814–1821.

    Article  CAS  PubMed  Google Scholar 

  32. Du, Y., Zhang, H., Lu, J., and Holmgren, A. (2012) Glutathione and glutaredoxin act as a backup of human thioredoxin reductase 1 to reduce thioredoxin 1 preventing cell death by aurothioglucose, J. Biol. Chem., 287, 38210–38219.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Olmos, Y., Valle, I., Borniquel, S., Tierrez, A., Soria, E., Lamas, S., and Monsalve, M. (2009) Mutual dependence of Foxo3a and PGC-1alpha in the induction of oxidative stress genes, J. Biol. Chem., 284, 14476–14484.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Scarpulla, R. C. (2008) Nuclear control of respiratory chain expression by nuclear respiratory factors and PGC-1related coactivator, Ann. N. Y. Acad. Sci., 1147, 321–334.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Patenaude, A., Ven Murthy, M. R., and Mirault, M. E. (2004) Mitochondrial thioredoxin system: effects of TrxR2 overexpression on redox balance, cell growth, and apoptosis, J. Biol. Chem., 279, 27302–27314.

    Article  CAS  PubMed  Google Scholar 

  36. Hansen, J. M., Zhang, H., and Jones, D. P. (2006) Mitochondrial thioredoxin-2 has a key role in determining tumor necrosis factor-alpha-induced reactive oxygen species generation, NF-kappaB activation, and apoptosis, Toxicol. Sci., 91, 643–650.

    Article  CAS  PubMed  Google Scholar 

  37. Zhang, H., Go, Y. M., and Jones, D. P. (2007) Mitochondrial thioredoxin-2/peroxiredoxin-3 system functions in parallel with mitochondrial GSH system in protection against oxidative stress, Arch. Biochem. Biophys., 465, 119–126.

    Article  CAS  PubMed  Google Scholar 

  38. Li, C., Wang, L., Zhang, J., Huang, M., Wong, F., Liu, X., Liu, F., Cui, X., Yang, G., Chen, J., Liu, Y., Wang, J., Liao, S., Gao, M., Hu, X., Shu, X., Wang, Q., Yin, Z., Tang, Z., and Liu, M. (2014) CERKL interacts with mitochondrial TRX2 and protects retinal cells from oxidative stressinduced apoptosis, Biochim. Biophys. Acta, 1842, 1121–1129.

    Article  CAS  PubMed  Google Scholar 

  39. Vaseva, A. V., Marchenko, N. D., Ji, K., Tsirka, S. E., Holzmann, S., and Moll, U. M. (2012) p53 opens the mitochondrial permeability transition pore to trigger necrosis, Cell, 149, 1536–1548.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Bae, S. H., Sung, S. H., Oh, S. Y., Lim, J. M., Lee, S. K., Park, Y. N., Lee, H. E., Kang, D., and Rhee, S. G. (2013) Sestrins activate Nrf2 by promoting p62-dependent autophagic degradation of Keap1 and prevent oxidative liver damage, Cell Metab., 17, 73–84.

    Article  CAS  PubMed  Google Scholar 

  41. Budanov, A. V., Shoshani, T., Faerman, A., Zelin, E., Kamer, I., Kalinski, H., Gorodin, S., Fishman, A., Chajut, A., Einat, P., Skaliter, R., Gudkov, A. V., Chumakov, P. M., and Feinstein, E. (2002) Identification of a novel stressresponsive gene Hi95 involved in regulation of cell viability, Oncogene, 21, 6017–6031.

    Article  CAS  PubMed  Google Scholar 

  42. Dinkova-Kostova, A. T., and Talalay, P. (2010) NAD(P)H:quinone acceptor oxidoreductase 1 (NQO1), a multifunctional antioxidant enzyme and exceptionally versatile cytoprotector, Arch. Biochem. Biophys., 501, 116–123.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Asher, G., Lotem, J., Kama, R., Sachs, L., and Shaul, Y. (2002) NQO1 stabilizes p53 through a distinct pathway, Proc. Natl. Acad. Sci. USA, 99, 3099–3104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Anwar, A., Dehn, D., Siegel, D., Kepa, J. K., Tang, L. J., Pietenpol, J. A., and Ross, D. (2003) Interaction of human NAD(P)H:quinone oxidoreductase 1 (NQO1) with the tumor suppressor protein p53 in cells and cell-free systems, J. Biol. Chem., 278, 10368–10373.

    Article  CAS  PubMed  Google Scholar 

  45. Chae, S., Ahn, B. Y., Byun, K., Cho, Y. M., Yu, M.-H., and Lee, B. (2013) A systems approach for decoding mitochondrial retrograde signaling pathways, Sci. Signal., 6, rs4.

    PubMed  Google Scholar 

  46. Cloonan, S. M., and Choi, A. M. (2013) Mitochondria: sensors and mediators of innate immune receptor signaling, Curr. Opin. Microbiol., 16, 327–338.

    Article  CAS  PubMed  Google Scholar 

  47. Julian, M. W., Shao, G., Vangundy, Z. C., Papenfuss, T. L., and Crouser, E. D. (2013) Mitochondrial transcription factor A, an endogenous danger signal, promotes TNFα release via RAGEand TLR9-responsive plasmacytoid dendritic cells, PLoS One, 8, e72354.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Oppenheimer, H., Gabay, O., Meir, H., Haze, A., Kandel, L., Liebergall, M., Gagarina, V., Lee, E. J., and Dvir-Ginzberg, M. (2012) 75-kD sirtuin 1 blocks tumor necrosis factor α-mediated apoptosis in human osteoarthritic chondrocytes, Arthritis Rheum., 64, 718–728.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. O-Uchi, J., Ryu, S. Y., Jhun, B. S., Hurst, S., and Sheu, S. S. (2013) Mitochondrial ion channels/transporters as sensors and regulators of cellular redox signaling, Antioxid. Redox Signal., 21, 987–1006.

    Article  Google Scholar 

  50. Rharass, T., Lemcke, H., Lantow, M., Kuznetsov, S. A., Weiss, D. G., and Panakova, D. (2014) Ca2+-mediated mitochondrial reactive oxygen species metabolism augments Wnt/ß-catenin pathway activation to facilitate cell differentiation, J. Biol. Chem., 289, 27937–27951.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Pavlides, S., Vera, I., Gandara, R., Sneddon, S., Pestell, R. G., Mercier, I., Martinez-Outschoorn, U. E., Whitaker Menezes, D., Howell, A., Sotgia, F., and Lisanti, M. P. (2011) Warburg meets autophagy: cancer-associated fibroblasts accelerate tumor growth and metastasis via oxidative stress, mitophagy, and aerobic glycolysis, Antioxid. Redox Signal., 16, 1264–1284.

    Article  PubMed  Google Scholar 

  52. Bellot, G., Garcia-Medina, R., Gounon, P., Chiche, J., Roux, D., Pouyssegur, J., and Mazure, N. M. (2009) Hypoxia-induced autophagy is mediated through hypoxiainducible factor induction of BNIP3 and BNIP3L via their BH3 domains, Mol. Cell. Biol., 29, 2570–2581.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Seton-Rogers, S. (2011) Cancer metabolism: feed it forward, Nat. Rev. Cancer, 11, 461.

    Article  CAS  PubMed  Google Scholar 

  54. Funato, Y., and Miki, H. (2010) Redox regulation of Wnt signaling via nucleoredoxin, Free Radic. Res., 44, 379–388.

    Article  CAS  PubMed  Google Scholar 

  55. Funk, J. A., and Schnellmann, R. G. (2013) Accelerated recovery of renal mitochondrial and tubule homeostasis with SIRT1/PGC-1α activation following ischemia-reperfusion injury, Toxicol. Appl. Pharmacol., 273, 345–354.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Zhang, X. H., Wei, H., Saric, T., Hescheler, J., Cleemann, L., and Morad, M. (2015) Regionally diverse mitochondrial calcium signaling regulates spontaneous pacing in developing cardiomyocytes, Cell Calcium, 57, 321–336.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Rosenberg, P. (2004) Mitochondrial dysfunction and heart disease, Mitochondrion, 4, 621–628.

    Article  CAS  PubMed  Google Scholar 

  58. Doughan, A. K., Harrison, D. G., and Dikalov, S. I. (2008) Molecular mechanisms of angiotensin II-mediated mitochondrial dysfunction: linking mitochondrial oxidative damage and vascular endothelial dysfunction, Circ. Res., 102, 488–496.

    Article  CAS  PubMed  Google Scholar 

  59. East, D. A., and Campanella, M. (2013) Ca2+ in quality control: an unresolved riddle critical to autophagy and mitophagy, Autophagy, 9, 1710–1719.

    Article  CAS  PubMed  Google Scholar 

  60. Onyango, P., Celic, I., McCaffery, J. M., Boeke, J. D., and Feinberg, A. P. (2002) SIRT3, a human SIR2 homologue, is an NAD-dependent deacetylase localized to mitochondria, Proc. Natl. Acad. Sci. USA, 99, 13653–13658.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Azarashvili, T., Odinokova, I., Bakunts, A., Ternovsky, V., Krestinina, O., Tyynela, J., and Saris, N. E. (2014) Potential role of subunit c of FoF1-ATPase and subunit c of storage body in the mitochondrial permeability transition. Effect of the phosphorylation status of subunitc on pore opening, Cell Calcium, 55, 69–77.

    Article  CAS  PubMed  Google Scholar 

  62. Alavian, K. N., Beutner, G., Lazrove, E., Sacchetti, S., Park, H. A., Licznerski, P., Li, H., Nabili, P., Hockensmith, K., Graham, M., Porter, G. A., Jr., and Jonas, E. A. (2014) An uncoupling channel within the csubunit ring of the F1Fo ATP synthase is the mitochondrial permeability transition pore, Proc. Natl. Acad. Sci. USA, 111, 10580–10585.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Jonas, E. A., Porter, G. A., Jr., Beutner, G., Mnatsakanyan, N., and Alavian, K. N. (2015) Cell death disguised: the mitochondrial permeability transition pore as the c-subunit of the F1Fo ATP synthase, Pharmacol. Res., 99, 382–392.

    Article  CAS  PubMed  Google Scholar 

  64. Lane, N., and Martin, W. (2010) The energetics of genome complexity, Nature, 467, 929–934.

    Article  CAS  PubMed  Google Scholar 

  65. Wang, Z., and Wu, M. (2014) Phylogenomic reconstruction indicates mitochondrial ancestor was an energy parasite, PLoS One, 9, e110685.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Cole, S. T., Eiglmeier, K., Parkhill, J., James, K. D., Thomson, N. R., Wheeler, P. R., Honore, N., Garnier, T., Churcher, C., Harris, D., Mungall, K., Basham, D., Brown, D., Chillingworth, T., Connor, R., Davies, R. M., Devlin, K., Duthoy, S., Feltwell, T., Fraser, A., Hamlin, N., Holroyd, S., Hornsby, T., Jagels, K., Lacroix, C., Maclean, J., Moule, S., Murphy, L., Oliver, K., Quail, M. A., Rajandream, M. A., Rutherford, K. M., Rutter, S., Seeger, K., Simon, S., Simmonds, M., Skelton, J., Squares, R., Squares, S., Stevens, K., Taylor, K., Whitehead, S., Woodward, J. R., and Barrell, B. G. (2001) Massive gene decay in the leprosy bacillus, Nature, 409, 1007–1011.

    Article  CAS  PubMed  Google Scholar 

  67. Masaki, T., Qu, J., Cholewa-Waclaw, J., Burr, K., Raaum, R., and Rambukkana, A. (2013) Reprogramming adult Schwann cells to stem cell-like cells by leprosy bacilli promotes dissemination of infection, Cell, 152, 51–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Stoner, G. L. (1979) Importance of the neural predilection of Mycobacterium leprae in leprosy, Lancet, 2, 994–996.

    Article  CAS  PubMed  Google Scholar 

  69. Finzsch, M., Schreiner, S., Kichko, T., Reeh, P., Tamm, E. R., Bösl, M. R., Meijer, D., and Wegner, M. (2010) Sox10 is required for Schwann cell identity and progression beyond the immature Schwann cell stage, J. Cell Biol., 189, 701–712.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Weider, M., Kuspert, M., Bischof, M., Vogl, M. R., Hornig, J., Loy, K., Kosian, T., Muller, J., Hillgartner, S., Tamm, E. R., Metzger, D., and Wegner, M. (2012) Chromatin-remodeling factor Brg1 is required for Schwann cell differentiation and myelination, Dev. Cell, 23, 193–201.

    Article  CAS  PubMed  Google Scholar 

  71. Hess, S., and Rambukkana, A. (2015) Bacterial-induced cell reprogramming to stem cell-like cells: new premise in hostpathogen interactions, Curr. Opin. Microbiol., 23, 179–188.

    Article  CAS  PubMed  Google Scholar 

  72. Masaki, T., Mc Glinchey, A., Tomlinson, S. R., Qu, J., and Rambukkana, A. (2013) Reprogramming diminishes retention of Mycobacterium leprae in Schwann cells and elevates bacterial transfer property to fibroblasts, F1000Res., 2, 198.

    PubMed  PubMed Central  Google Scholar 

  73. Masaki, T., Mc Glinchey, A., Cholewa-Waclaw, J., Qu, J., Tomlinson, S. R., and Rambukkana, A. (2014) Innate immune response precedes Mycobacterium leprae-induced reprogramming of adult Schwann cells, Cell. Reprogramm., 16, 9–17.

    Article  CAS  Google Scholar 

  74. Kobayashi, Y., Kanesaki, Y., Tanaka, A., Kuroiwa, H., Kuroiwa, T., and Tanaka, K. (2009) Tetrapyrrole signal as a cell-cycle coordinator from organelle to nuclear DNA replication in plant cells, Proc. Natl. Acad. Sci. USA, 106, 803–807.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Caballero, A., Ugidos, A., Liu, B., Oling, D., Kvint, K., Hao, X., Mignat, C., Nachin, L., Molin, M., and Nystrom, T. (2011) Absence of mitochondrial translation control proteins extends life span by activating sirtuin-dependent silencing, Mol. Cell, 42, 390–400.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Chistyakov.

Additional information

Original Russian Text © P. V. Zolotukhin, A. A. Belanova, E. V. Prazdnova, M. S. Mazanko, M. M. Batiushin, V. K. Chmyhalo, V. A. Chistyakov, 2016, published in Biokhimiya, 2016, Vol. 81, No. 4, pp. 465–475.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zolotukhin, P.V., Belanova, A.A., Prazdnova, E.V. et al. Mitochondria as a signaling Hub and target for phenoptosis shutdown. Biochemistry Moscow 81, 329–337 (2016). https://doi.org/10.1134/S0006297916040039

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297916040039

Keywords

Navigation