Skip to main content
Log in

Role of microtubule cytoskeleton in regulation of endothelial barrier function

  • Review
  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Cytoplasmic microtubules are an obligatory component of the cytoskeleton of all types of cells. Microtubules are involved in many cellular processes including directed transport of vesicles and signaling molecules and changes in cell shape during its spreading, polarization, and movement. The intracellular organization of the system of microtubules and their dynamic properties are different in different types of cells because they play a key role in the implementation of a variety of cell and tissue functions, including the regulation of the endothelial barrier function. This review presents an overview of current studies on the properties of endothelial microtubules, their interaction with other components of the cytoskeleton and cell adhesion structures, and the role of microtubules in the regulation of the endothelial barrier function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Porter, K. R. (1966) Cytoplasmic microtubules and their function, Ciba Found. Symp., 8, 308–356.

    Google Scholar 

  2. McIntosh, J. R., and Euteneuer, U. (1984) Tubulin hooks as probes for microtubule polarity: an analysis of the method and an evaluation of data on microtubule polarity in the mitotic spindle, J. Cell Biol., 98, 525–533.

    PubMed  CAS  Google Scholar 

  3. Keating, T. J., and Borisy, G. G. (1999) Centrosomal and non-centrosomal microtubules, Biol. Cell, 91, 321–329.

    PubMed  CAS  Google Scholar 

  4. Moritz, M., and Agard, D. (2001) Gamma-tubulin complexes and microtubule nucleation, Curr. Opin. Struct. Biol., 11, 174–181.

    PubMed  CAS  Google Scholar 

  5. Howard, J., and Hyman, A. A. (2003) Dynamics and mechanics of the microtubule plus end, Nature, 422, 753–758.

    PubMed  CAS  Google Scholar 

  6. Burakov, A. V., and Nadezhdina, E. S. (2006) Dynein and dynactin as systems of cellular microtubules, Ontogenez, 37, 1–17.

    Google Scholar 

  7. Komarova, Y. A., Vorobjev, I. A., and Borisy, G. G. (2002) Life cycle of MTs: persistent growth in the cell interior; asymmetric transition frequencies and effects of cell boundary, J. Cell Sci., 115, 3517–3539.

    Google Scholar 

  8. Rodionov, V. I., Lim, S., Gelfand, V. I., and Borisy, G. G. (1994) Microtubule dynamics in fish melanophores, J. Cell Biol., 126, 1455–1464.

    PubMed  CAS  Google Scholar 

  9. Rodionov, V. I., Hope, A. J., Svitkina, T. M., and Borisy, G. G. (1998) Functional coordination of microtubule-based and actin-based motility in melanophores, Curr. Biol., 8, 165–168.

    PubMed  CAS  Google Scholar 

  10. Vorobjev, I. A., Alieva, I. B., Grigoriev, I. S., and Borisy, G. G. (2003) Microtubule dynamics in living cells: direct analysis in the internal cytoplasm, Cell Biol. Int., 27, 293–294.

    PubMed  CAS  Google Scholar 

  11. Alieva, I. B., Borisy, G. G., and Vorobjev, I. A. (2008) Spatial organization of centrosome-linked and free microtubules in the cytoplasm of fibroblasts 3T3, Tsitologiya, 50, 936–946.

    CAS  Google Scholar 

  12. Bacallao, R., Antony, C., Dotti, C., Karsenti, E., Stelzer, E. H., and Simons, K. (1989) The subcellular organization of Madin-Darby canine kidney cells during the formation of a polarized epithelium, J. Cell Biol., 109, 2817–2832.

    PubMed  CAS  Google Scholar 

  13. Durand-Schneider, A. M., Bouanga, J. C., Feldmann, G., and Maurice, M. (1991) Microtubule disruption interferes with the structural and functional integrity of the apical pole in primary cultures of rat hepatocytes, Eur. J. Cell Biol., 56, 260–268.

    PubMed  CAS  Google Scholar 

  14. Gilbert, T., and Rodriguez-Boulan, E. (1991) Induction of vacuolar apical compartments in the Caco-2 intestinal epithelial cell line, J. Cell Sci., 100, 451–458.

    PubMed  Google Scholar 

  15. Tassin, A. M., Maro, B., and Bornens, M. (1985) Fate of microtubule-organizing centers during myogenesis in vitro, J. Cell Biol., 100, 35–46.

    PubMed  CAS  Google Scholar 

  16. Yu, W., Ahmad, F. J., and Baas, P. W. (1994) Microtubule fragmentation and partitioning in the axon during collateral branch formation, J. Neurosci., 14, 5872–5884.

    PubMed  CAS  Google Scholar 

  17. Mogensen, M. M., Tucker, J. B., Mackie, J. B., Prescott, A. R., and Nathke, I. S. (2002) The adenomatous polyposis coli protein unambiguously localizes to microtubule plus ends and is involved in establishing parallel arrays of microtubule bundles in highly polarized epithelial cells, J. Cell Biol., 157, 1041–1048.

    PubMed  CAS  PubMed Central  Google Scholar 

  18. Mogensen, M. M. (2004) Microtubule organizing centers in polarized epithelial cells, in Centrosomes in Development and Disease, Wiley-VCH Verlag GmbH & Co., KGaA, Weinheim, pp. 299–319.

    Google Scholar 

  19. Bugnard, E., Zaal, K. J., and Ralston, E. (2005) Reorganization of microtubule nucleation during muscle differentiation, Cell Motil. Cytoskeleton, 60, 1–13.

    PubMed  Google Scholar 

  20. Bartolini, F., and Gundersen, G. G. (2006) Generation of noncentrosomal microtubule arrays, J. Cell Sci., 119, 4155–4163.

    PubMed  CAS  Google Scholar 

  21. Patuzzi, R. (1998) Exponential onset and recovery of temporary threshold shift after loud sound: evidence for longterm inactivation of mechano-electrical transduction channels, Hear Res., 125, 17–38.

    PubMed  CAS  Google Scholar 

  22. Moss, D. K., Bellett, G., Carter, J. M., Liovic, M., Keynton, J., Prescott, A. R., Lane, E. B., and Mogensen, M. M. (2007) Ninein is released from the centrosome and moves bi-directionally along microtubules, J. Cell Sci., 120, 3064–3074.

    PubMed  CAS  Google Scholar 

  23. Smurova, K. M., Birukova, A. A., Verin, A. D., and Alieva, I. B. (2008) Microtubule system at the barrier dysfunction of endothelium: depolarization of the cell border in the inner cytoplasm, Tsitologiya, 50, 49–55.

    CAS  Google Scholar 

  24. Alieva, I. B., Zemskov, E. A., Kireev, I. I., Gorshkov, B. A., Wiseman, D. A., Black, S. M., and Verin, A. D. (2010) Dynamic microtubules are involved in human endothelial cells barrier function, J. Biomed. Biotech., 2010, 671536.

    Google Scholar 

  25. Alieva, I. B., Zemskov, E. A., Smurova, K. M., Kaverina, I. N., and Verin, A. D. (2013) The leading role of microtubules in endothelial barrier dysfunction: disassembly of peripheral microtubules leaves behind the cytoskeletal reorganization, J. Cell Biochem., 114, 2258–2272.

    PubMed  CAS  Google Scholar 

  26. Smurova, K. M., Birukova, A. A., Verin, A. D., and Alieva, I. B. (2008) Dose-dependent effect of nocodazole on the cytoskeleton of endothelial cells, Biol. Membr., 25, 181–190.

    CAS  Google Scholar 

  27. Jalimarada, S. S., Shivanna, M., Kini, V., Mehta, D., and Srinivas, S. P. (2009) Microtubule disassembly breaks down the barrier integrity of corneal endothelium, Exp. Eye Res., 89, 333–343.

    PubMed  CAS  PubMed Central  Google Scholar 

  28. Ware, L. B., and Matthay, M. A. (2000) The acute respiratory distress syndrome, N. Engl. J. Med., 342, 1334–1349.

    PubMed  CAS  Google Scholar 

  29. Garcia, J. G., Davis, H. W., and Patterson, C. E. (1995) Regulation of endothelial cell gap formation and barrier dysfunction: role of myosin light chain phosphorylation, J. Cell. Physiol., 163, 510–522.

    PubMed  CAS  Google Scholar 

  30. Garcia, J. G., Verin, A. D., and Schaphorst, K. L. (1996) Regulation of thrombin-mediated endothelial cell contraction and permeability, Semin. Thromb. Hemost., 22, 309–315.

    PubMed  CAS  Google Scholar 

  31. Lum, H., and Malik, A. B. (1996) Mechanisms of increased endothelial permeability, Can. J. Physiol. Pharmacol., 74, 787–800.

    PubMed  CAS  Google Scholar 

  32. Van Nieuw Amerongen, G. P., Vermeer, M. A., and van Hinsbergh, V. W. (2000) Role of RhoA and Rho kinase in lysophosphatidic acid-induced endothelial barrier dysfunction, Arterioscler. Thromb. Vasc. Biol., 20, e127–e133.

    PubMed  Google Scholar 

  33. Dudek, S. M., and Garcia, J. G. (2001) Cytoskeletal regulation of pulmonary vascular permeability, J. Appl. Physiol., 91, 1487–1500.

    PubMed  CAS  Google Scholar 

  34. Groeneveld, A. B. (2002) Vascular pharmacology of acute lung injury and acute respiratory distress syndrome, Vasc. Pharmacol., 39, 247–256.

    CAS  Google Scholar 

  35. Birukova, A., Birukov, K., Smurova, K., Kaibuchi, K., Alieva, I., Garcia, J. G., and Verin, A. (2004) Novel role of microtubules in thrombin-induced endothelial barrier dysfunction, FASEB J., 18, 1879–1890.

    PubMed  CAS  Google Scholar 

  36. Birukova, A. A, Smurova, K. M., Birukov, K. G., Kaibuchi, K., Garcia, J. G., and Verin, A. D. (2004) Role of Rho GTPases in thrombin-induced lung vascular endothelial cells barrier dysfunction, Microvasc. Res., 67, 64–77.

    PubMed  CAS  Google Scholar 

  37. Bruneel, A., Labas, V., Mailloux, A., Sharma, S., Vinh, J., Vaubourdolle, M., and Baudin, B. (2003) Proteomic study of human umbilical vein endothelial cells in culture, Proteomics, 3, 714–723.

    PubMed  CAS  Google Scholar 

  38. Shakhov, A. V., Alieva, I. B., and Verin, A. D. (2014) Reorganization of cytoskeleton of endothelial cells on formation of the functional monolayer in vitro, Tsitologiya, 56, 36–47.

    Google Scholar 

  39. Morgan, J. T., Pfeiffer, E. R., Thirkill, T. L., Kumar, P., Peng, G., Fridolfsson, H. N., Douglas, G. C., Starr, D. A., and Barakat, A. I. (2011) Nesprin-3 regulates endothelial cell morphology, perinuclear cytoskeletal architecture, and flow-induced polarization, Mol. Biol. Cell, 22, 4324–4334.

    PubMed  CAS  PubMed Central  Google Scholar 

  40. Cary, R. B., Klymkowsky, M. W., Evans, R. M., Domingo, A., Dent, J. A., and Backhus, L. E. (1994) Vimentin’s tail interacts with actin-containing structures in vivo, J. Cell Sci., 107, 1609–1622.

    PubMed  CAS  Google Scholar 

  41. Esue, O., Carson, A. A., Tseng, Y., and Wirtz, D. (2006) A direct interaction between actin and vimentin filaments mediated by the tail domain of vimentin, J. Biol. Chem., 281, 30393–30399.

    PubMed  CAS  Google Scholar 

  42. Kreitzer, G., Liao, G., and Gundersen, G. G. (1999) Detyrosination of tubulin regulates the interaction of intermediate filaments with microtubules in vivo via a kinesindependent mechanism, Mol. Biol. Cell, 10, 1105–1118.

    PubMed  CAS  PubMed Central  Google Scholar 

  43. Draberova, E., and Draber, P. (1993) A microtubule-interacting protein involved in co-alignment of vimentin intermediate filaments with microtubules, J. Cell Sci., 106, 1263–1273.

    PubMed  CAS  Google Scholar 

  44. Liao, G., and Gundersen, G. G. (1998) Kinesin is a candidate for cross-bridging microtubules and intermediate filaments. Selective binding of kinesin to detyrosinated tubulin and vimentin, J. Biol. Chem., 273, 9797–9803.

    PubMed  CAS  Google Scholar 

  45. Shasby, D. M., Shasby, S. S., Sullivan, J. M., and Peach, M. J. (1982) Role of endothelial cell cytoskeleton in control of endothelial permeability, Circ. Res., 51, 657–661.

    PubMed  CAS  Google Scholar 

  46. Phillips, P. G., Lum, H., Malik, A. B., and Tsan, M. F. (1989) Phallacidin prevents thrombin-induced increases in endothelial permeability to albumin, Am. J. Physiol., 257, 562–567.

    Google Scholar 

  47. Amann, K. J., and Pollard, T. D. (2000) Cellular regulation of actin network assembly, Curr. Biol., 10, 728–730.

    Google Scholar 

  48. Kaverina, I., Krylyshkina, O., and Small, J. V. (1999) Microtubule targeting of substrate contacts promotes their relaxation, J. Cell. Biol., 146, 1033–1043.

    PubMed  CAS  PubMed Central  Google Scholar 

  49. Stehbens, S., and Wittmann, T. (2012) Targeting and transport: how microtubules control focal adhesion dynamics, J. Cell Biol., 198, 481–489.

    PubMed  CAS  PubMed Central  Google Scholar 

  50. Adams, C. L., Chen, Y. T., Smith, S. J., and Nelson, W. J. (1998) Mechanisms of epithelial cell-cell adhesion and cell compaction revealed by high-resolution tracking of E-cadherin-green fluorescent protein, J. Cell Biol., 142, 1105–1119.

    PubMed  CAS  PubMed Central  Google Scholar 

  51. Smurova, K. M., Birukova, A. A., Verin, A. D., and Alieva, I. B. (2008) Microtubule system in endothelial barrier dysfunction: disassembly of peripheral microtubules and microtubule reorganization in internal cytoplasm, Cell Tissue Biol., 2, 45–52.

    Google Scholar 

  52. Dejana, E., Bazzoni, G., and Lampugnani, M. G. (1999) Vascular endothelial (VE)-cadherin: only an intercellular glue, Exp. Cell Res., 252, 13–19.

    PubMed  CAS  Google Scholar 

  53. Bazzoni, G., and Dejana, E. (2004) Endothelial cell-to-cell junctions: molecular organization and role in vascular homeostasis, Physiol. Rev., 84, 869–901.

    PubMed  CAS  Google Scholar 

  54. Prasain, N., and Stevens, T. (2009) The actin cytoskeleton in endothelial cell phenotypes, Microvasc. Res., 77, 53–63.

    PubMed  CAS  PubMed Central  Google Scholar 

  55. Smurova, K. M., Verin, A. D., and Alieva, I. B. (2011) Effect of Rho-kinase inhibition at the barrier dysfunction depends on the nature of factors changing the endothelium permeability, Tsitologiya, 53, 359–366.

    CAS  Google Scholar 

  56. Smurova, K. M., Birukova, A. A., Verin, A. D., and Alieva, I. B. (2008) Dose-dependent effect of nocodazole on endothelial cell cytoskeleton, Biochemistry (Moscow), Suppl. Ser. A: Membrane and Cell Biology, 2, 119–127.

    Google Scholar 

  57. Verin, A. D., Birukova, A., Wang, P., Liu, F., Becker, P., Birukov, K., and Garcia, J. G. (2001) Microtubule disassembly increases endothelial cell barrier dysfunction: role of MLC phosphorylation, Am. J. Physiol., 281, 565–574.

    Google Scholar 

  58. Meng, W., Mushika, Y., Ichii, T., and Takeichi, M. (2008) Anchorage of microtubule minus ends to adherens junctions regulates epithelial cell-cell contacts, Cell, 135, 948–959.

    PubMed  CAS  Google Scholar 

  59. Lee, T. Y., and Gotlieb, A. I. (2003) Microfilaments and microtubules maintain endothelial integrity, Microsc. Res. Tech., 60, 115–127.

    PubMed  CAS  Google Scholar 

  60. Brieher, W. M., and Yap, A. S. (2013) Cadherin junctions and their cytoskeleton(s), Curr. Opin. Cell Biol., 25, 39–46.

    PubMed  CAS  Google Scholar 

  61. Komarova, Y. A., Huang, F., Geyer, M., Daneshjou, N., Garcia, A., Idalino, L., Kreutz, B., Mehta, D., and Malik, A. B. (2012) VE-cadherin signaling induces EB3 phosphorylation to suppress microtubule growth and assembly adherens junctions, Mol. Cell, 48, 914–925.

    PubMed  CAS  PubMed Central  Google Scholar 

  62. Mitchison, T., and Kirschner, M. (1984) Dynamic instability of microtubule growth, Nature, 312, 237–242.

    PubMed  CAS  Google Scholar 

  63. Mitchison, T., and Kirschner, M. (1984) Microtubule assembly nucleated by isolated centrosomes, Nature, 312, 232–237.

    PubMed  CAS  Google Scholar 

  64. Vorobjev, I. A., Rodionov, V. I., Maly, I. V., and Borisy, G. G. (1999) Contribution of plus and minus end pathways to microtubule turnover, J. Cell Sci., 112, 2277–2289.

    PubMed  CAS  Google Scholar 

  65. Vorobjev, I., Malikov, V., and Rodionov, V. (2001) Selforganization of a radial microtubule array by dyneindependent nucleation of microtubules, Proc. Natl. Acad. Sci. USA, 98, 10160–10165.

    PubMed  CAS  PubMed Central  Google Scholar 

  66. Galjart, N. (2010) Plus-end-tracking proteins and their interactions at microtubule ends, Curr. Biol., 20, R528R537.

    Google Scholar 

  67. Akhmanova, A., and Steinmetz, M. O. (2010) Microtubule + TIPs at a glance, J. Cell Sci., 123, 3415–3419.

    PubMed  CAS  Google Scholar 

  68. Gundersen, G. G., Gomes, E. R., and Wen, Y. (2004) Cortical control of microtubule stability and polarization, Curr. Opin. Cell Biol., 16, 106–112.

    PubMed  CAS  Google Scholar 

  69. Carramusa, L., Ballestrem, C., Zilberman, Y., and Bershadsky, A. D. (2007) Mammalian diaphanous-related formin Dia1 controls the organization of E-cadherinmediated cell-cell junctions, J. Cell Sci., 120, 3870–3882.

    PubMed  CAS  Google Scholar 

  70. Efimov, A., Kharitonov, A., Efimova, N., Loncarek, J., Miller, P. M., Andreyeva, N., Gleeson, P., Galjart, N., Maia, A. R. R., McLeod, I. X., Yates, J. R., III, Maiato, H., Khodjakov, A., Akhmanova, A., and Kaverina, I. (2007) Asymmetric CLASP-dependent nucleation of noncentrosomal microtubules at the trans-Golgi network, Dev. Cell, 12, 917–930.

    PubMed  CAS  PubMed Central  Google Scholar 

  71. Kaverina, I., and Straube, A. (2011) Regulation of cell migration by dynamic microtubules, Semin. Cell Dev. Biol., 22, 968–974.

    PubMed  CAS  PubMed Central  Google Scholar 

  72. Shewan, A. M., Maddugoda, M., Kraemer, A., Stehbens, S. J., Verma, S., Kovacs, E. M., and Yap, A. S. (2005) Myosin 2 is a key Rho kinase target necessary for the local concentration of E-cadherin at cell-cell contacts, Mol. Biol. Cell, 16, 4531–4542.

    PubMed  CAS  PubMed Central  Google Scholar 

  73. Stehbens, S. J., Paterson, A. D., Crampton, M. S., Shewan, A. M., Ferguson, C., Akhmanova, A., Parton, R. G., and Yap, A. S. (2006) Dynamic microtubules regulate the local concentration of E-cadherin at cell-cell contacts, J. Cell Sci., 1199, 1801–1811.

    Google Scholar 

  74. Small, J. V., and Kaverina, I. (2003) Microtubules meet substrate adhesions to arrange cell polarity, Curr. Opin. Cell Biol., 15, 40–47.

    PubMed  CAS  Google Scholar 

  75. Efimov, A., Schiefermeier, N., Grigoriev, I., Ohi, R., Brown, M. C., Turner, C. E., Small, J. V., and Kaverina, I. (2008) Paxillin-dependent stimulation of microtubule catastrophes at focal adhesion sites, J. Cell Sci., 121, 196–204.

    PubMed  CAS  PubMed Central  Google Scholar 

  76. Broussard, J. A., Webb, D. J., and Kaverina, I. (2008) Asymmetric focal adhesion disassembly in motile cells, Curr. Opin. Cell Biol., 20, 85–90.

    PubMed  CAS  Google Scholar 

  77. Efimov, A., and Kaverina, I. (2009) Significance of microtubule catastrophes at focal adhesion sites, Cell Adh. Migr., 3, 285–287.

    PubMed  CAS  PubMed Central  Google Scholar 

  78. Meenderink, L. M., Ryzhova, L. M., Donato, D. M., Gochberg, D. F., Kaverina, I., and Hanks, S. K. (2010) P130Cas Src-binding and substrate domains have distinct roles in sustaining focal adhesion disassembly and promoting cell migration, PLoS One, 5, e13412.

    PubMed  PubMed Central  Google Scholar 

  79. Zhu, X., and Kaverina, I. (2013) Golgi as an MTOC: making microtubules for its own good, Histochem. Cell Biol., 140, 361–367.

    PubMed  CAS  PubMed Central  Google Scholar 

  80. Alieva, I. B., and Verin, A. D. (2013) The functional role of the microtubule/microfilament cytoskeleton in the regulation of pulmonary vascular endothelial barrier, in Endothelial Cytoskeleton (Rosado, J. A., and Redondo, P. C., eds.) Science Publishers, N. Y., pp. 116–145.

    Google Scholar 

  81. Watanabe, T., Wang, S., Noritake, J., Sato, K., Fukata, M., Takefuji, M., Nakagawa, M., Izumi, N., Akiyama, T., and Kaibuchi, K. (2004) Interaction with IQGAP1 links APC to Rac1, Cdc42, and actin filaments during cell polarization and migration, Dev. Cell, 7, 871–883.

    PubMed  CAS  Google Scholar 

  82. Applewhite, D. A., Grode, K. D., Keller, D., Zadeh, A. D., Slep, K. C., and Rogers, S. L. (2010) The spectraplakin short stop is an actin — microtubule cross-linker that contributes to organization of the microtubule network, Mol. Biol. Cell, 21, 1714–1724.

    PubMed  CAS  PubMed Central  Google Scholar 

  83. Preciado Lopez, M., Huber, F., Grigoriev, I., Steinmetz, M. O., Akhmanova, A., Dogterom, M., and Koenderink, G. H. (2014) In vitro reconstitution of dynamic microtubules interacting with actin filament networks, Methods Enzymol., 540, 301–320.

    PubMed  Google Scholar 

  84. Kjoller, L., and Hall, A. (1999) Signaling to Rho GTPases, Exp. Cell Res., 253, 166–179.

    PubMed  CAS  Google Scholar 

  85. Ridley, A. J. (2001) Rho family proteins: coordinating cell responses, Trends Cell Biol., 11, 471–477.

    PubMed  CAS  Google Scholar 

  86. Schmidt, A., and Hall, A. (2002) Guanine nucleotide exchange factors for Rho GTPases: turning on the switch, Genes Dev., 16, 1587–1609.

    PubMed  CAS  Google Scholar 

  87. Bershadsky, A. D., Balaban, N. Q., and Geiger, B. (2003) Adhesion-dependent cell mechanosensitivity, Annu. Rev. Cell Dev. Biol., 19, 677–695.

    PubMed  CAS  Google Scholar 

  88. Bershadsky, A. D., Ballestrem, C., Carramusa, L., Zilberman, Y., Gilquin, B., Khochbin, S., Alexandrova, A. Y., Verkhovsky, A. B., Shemesh, T., and Kozlov, M. M. (2006) Assembly and mechanosensory function of focal adhesions: experiments and models, Eur. J. Cell Biol., 85, 165–173.

    PubMed  CAS  Google Scholar 

  89. Fuchs, E., and Karakesisoglou, I. (2001) Bridging cytoskeletal intersections, Genes Dev., 15, 1–14.

    PubMed  CAS  Google Scholar 

  90. Rodriguez, O. C., Schaefer, A. W., Mandato, C. A., Forscher, P., Bement, W. M., and Waterman-Storer, C. M. (2003) Conserved microtubule-actin interactions in cell movement and morphogenesis, Nat. Cell Biol., 5, 599–609.

    PubMed  CAS  Google Scholar 

  91. Cook, T. A., Nagasaki, T., and Gundersen, G. G. (1998) Rho guanosine triphosphatase mediates the selective stabilization of microtubules induced by lysophosphatidic acid, J. Cell Biol., 141, 175–185.

    PubMed  CAS  PubMed Central  Google Scholar 

  92. Daub, H., Gevaert, K., Vandekerckhove, J., Sobel, A., and Hall, A. (2001) Rac/Cdc42 and p65PAK regulate the microtubule-destabilizing protein stathmin through phosphorylation at serine 16, J. Biol. Chem., 276, 1677–1680.

    PubMed  CAS  Google Scholar 

  93. Ishizaki, T., Morishima, Y., Okamoto, M., Furuyashiki, T., Kato, T., and Narumiya, S. (2001) Coordination of microtubules and the actin cytoskeleton by the Rho effector mDia 1, Nat. Cell Biol., 3, 8–14.

    PubMed  CAS  Google Scholar 

  94. Palazzo, A. F., Cook, T. A., Alberts, A. S., and Gundersen, G. G. (2001) mDia mediates Rho-regulated formation and orientation of stable microtubules, Nat. Cell Biol., 3, 723–729.

    PubMed  CAS  Google Scholar 

  95. Fukata, M., Watanabe, T., Noritake, J., Nakagawa, M., Yamaga, M., Kuroda, S., Matsuura, Y., Iwamatsu, A., Perez, F., and Kaibuchi, K. (2002) Rac1 and Cdc42 capture microtubules through IQGAP1 and CLIP-170, Cell, 109, 873–885.

    PubMed  CAS  Google Scholar 

  96. Jaffe, A. B., and Hall, A. (2005) Rho GTPases: biochemistry and biology, Annu. Rev. Cell Dev. Biol., 21, 247–269.

    PubMed  CAS  Google Scholar 

  97. Morris, E. J., Nader, G. P., Ramalingam, N., Bartolini, F., and Gundersen, G. G. (2014) Kif4 interacts with EB1 and stabilizes microtubules downstream of Rho-mDia in migrating fibroblasts, PLoS One, 9, e91568.

    PubMed  PubMed Central  Google Scholar 

  98. Mehta, D., and Malik, A. B. (2006) Signaling mechanisms regulating endothelial permeability, Physiol. Rev., 86, 279–367.

    PubMed  CAS  Google Scholar 

  99. Alberts, A. S. (2002) Diaphanous-related formin homology proteins, Curr. Biol., 12, R796.

    PubMed  CAS  Google Scholar 

  100. Wallar, B. J., and Alberts, A. S. (2003) The formins: active scaffolds that remodel the cytoskeleton, Trends Cell Biol., 13, 435–446.

    PubMed  CAS  Google Scholar 

  101. Watanabe, N., Kato, T., Fujita, A., Ishizaki, T., and Narumiya, S. (1999) Cooperation between mDia1 and ROCK in Rho-induced actin reorganization, Nat. Cell Biol., 1, 136–143.

    PubMed  CAS  Google Scholar 

  102. Bartolini, F., Moseley, J. B., Schmoranzer, J., Cassimeris, L., Goode, B. L., and Gundersen, G. G. (2008) The formin mDia2 stabilizes microtubules independently of its actin nucleation activity, J. Cell Biol., 181, 523–536.

    PubMed  CAS  PubMed Central  Google Scholar 

  103. Wen, Y., Eng, C. H., Schmoranzer, J., Cabrera-Poch, N., Morris, E. J., Chen, M., Wallar, B. J., Alberts, A. S., and Gundersen, G. G. (2004) EB1 and APC bind to mDia to stabilize microtubules downstream of Rho and promote cell migration, Nat. Cell Biol., 6, 820–830.

    PubMed  CAS  Google Scholar 

  104. Heald, R., and Nogales, E. (2002) Microtubule dynamics, J. Cell Sci., 115, 3–4.

    PubMed  CAS  Google Scholar 

  105. Zilberman, Y., Ballestrem, C., Carramusa, L., Mazitschek, R., Khochbin, S., and Bershadsky, A. (2009) Regulation of microtubule dynamics by inhibition of the tubulin deacetylase HDAC6, J. Cell Sci., 122, 3531–3541.

    PubMed  CAS  Google Scholar 

  106. Shemesh, T., Verkhovsky, A. B., Svitkina, T. M., Bershadsky, A. D., and Kozlov, M. M. (2009) Role of focal adhesions and mechanical stresses in the formation and progression of the lamellipodium-lamellum interface, Biophys. J., 97, 1254–1264.

    PubMed  CAS  PubMed Central  Google Scholar 

  107. Zhang, T., Zaal, K. J., Sheridan, J., Mehta, A., Gundersen, G. G., and Ralston, E. (2009) Microtubule plus-end binding protein EB1 is necessary for muscle cell differentiation, elongation and fusion, J. Cell Sci., 122, 1401–1409.

    PubMed  CAS  PubMed Central  Google Scholar 

  108. Okada, K., Bartolini, F., Deaconescu, A. M., Moseley, J. B., Dogic, Z., Grigorieff, N., Gundersen, G. G., and Goode, B. L. (2010) Adenomatous polyposis coli protein nucleates actin assembly and synergizes with the formin mDia1, J. Cell Biol., 189, 1087–1096.

    PubMed  CAS  PubMed Central  Google Scholar 

  109. Sudhaharan, T., Goh, W. I., Sem, K. P., Lim, K. B., Bu, W., and Ahmed, S. (2011) Rho GTPase Cdc42 is a direct interacting partner of Adenomatous Polyposis Coli protein and can alter its cellular localization, PLoS One, 6, e16603.

    PubMed  CAS  PubMed Central  Google Scholar 

  110. Zilberman, Y., Alieva, N. O., Miserey-Lenkei, S., Lichtenstein, A., Kam, Z., Sabanay, H., and Bershadsky, A. (2011) Involvement of the Rho-mDia1 pathway in the regulation of Golgi complex architecture and dynamics, Mol. Biol. Cell, 22, 2900–2911.

    PubMed  CAS  PubMed Central  Google Scholar 

  111. Joo, E. E., and Yamada, K. M. (2014) MYPT1 regulates contractility and microtubule acetylation to modulate integrin adhesions and matrix assembly, Nat. Commun., 5, 3510.

    PubMed  Google Scholar 

  112. Bartolini, F., and Gundersen, G. G. (2010) Formins and microtubules, Biochim. Biophys. Acta, 1803, 164–173.

    PubMed  CAS  PubMed Central  Google Scholar 

  113. Tsuji, T., Ishizaki, T., Okamoto, M., Higashida, C., Kimura, K., Furuyashiki, T., Arakawa, Y., Birge, R. B., Nakamoto, T., Hirai, H., and Narumiya, S. (2002) ROCK and mDia1 antagonize in Rho-dependent Rac activation in Swiss 3T3 fibroblasts, J. Cell Biol., 157, 819–830.

    PubMed  CAS  PubMed Central  Google Scholar 

  114. Gundersen, G. G. (2002) Microtubule capture: IQGAP and CLIP-170 expand the repertoire, Curr. Biol., 12, 645–647.

    Google Scholar 

  115. Lansbergen, G., and Akhmanova, A. (2006) Microtubule plus end: a hub of cellular activities, Traffic, 7, 499–507.

    PubMed  CAS  Google Scholar 

  116. Komarova, Y. A., Mehta, D., and Malik, A. B. (2007) Dual regulation of endothelial junctional permeability, Sci. STKE, 412, re8.

    Google Scholar 

  117. Akiyama, T., and Kawasaki, Y. (2006) Wnt signaling and the actin cytoskeleton, Oncogene, 25, 7538–7544.

    PubMed  CAS  Google Scholar 

  118. Etienne-Manneville, S., and Hall, A. (2002) Rho GTPases in cell biology, Nature, 420, 629–635.

    PubMed  CAS  Google Scholar 

  119. Krendel, M., Zenke, F. T., and Bokoch, G. M. (2002) Nucleotide exchange factor GEF-H1 mediates cross-talk between microtubules and the actin cytoskeleton, Nat. Cell Biol., 4, 294–301.

    PubMed  CAS  Google Scholar 

  120. Krendel, M., and Mooseker, M. S. (2005) Myosins: tails (and heads) of functional diversity, Physiology (Bethesda), 20, 239–251.

    CAS  Google Scholar 

  121. Lim, Y., Lim, S. T., Tomar, A., Gardel, M., Bernard-Trifilo, J. A., Chen, X. L., Uryu, S. A., Canete-Soler, R., Zhai, J., Lin, H., Schlaepfer, W. W., Nalbant, P., Bokoch, G., Ilic, D., Waterman-Storer, C., and Schlaepfer, D. D. (2008) PyK2 and FAK connections to p190Rho guanine nucleotide exchange factor regulate RhoA activity, focal adhesion formation, and cell motility, J. Cell Biol., 180, 187–203.

    PubMed  CAS  PubMed Central  Google Scholar 

  122. Hotta, A., Kawakatsu, T., Nakatani, T., Sato, T., Matsui, C., Sukezane, T., Akagi, T., Hamaji, T., Grigoriev, I., Akhmanova, A., Takai, Y., and Mimori-Kiyosue, Y. (2010) Laminin-based cell adhesion anchors microtubule plus ends to the epithelial cell basal cortex through LL5alpha/beta, J. Cell Biol., 189, 901–917.

    PubMed  CAS  PubMed Central  Google Scholar 

  123. Kovacs, E. M., Verma, S., Ali, R. G., Ratheesh, A., Hamilton, N. A., Akhmanova, A., and Yap, A. S. (2011) N-WASP regulates the epithelial junctional actin cytoskeleton through a non-canonical post-nucleation pathway, Nat. Cell Biol., 13, 934–943.

    PubMed  CAS  Google Scholar 

  124. Bogatcheva, N. V., Adyshev, D., Mambetsariev, B., Moldobaeva, N., and Verin, A. D. (2007) Involvement of microtubules, p38, and Rho kinases pathway in 2-methoxyestradiol-induced lung vascular barrier dysfunction, Am. J. Physiol. Lung Cell. Mol. Physiol., 292, 487–499.

    Google Scholar 

  125. Birukova, A. A., Birukov, K. G., Adyshev, D., Usatyuk, P., Natarajan, V., Garcia, J. G., and Verin, A. D. (2005) Involvement of microtubules and Rho pathway in TGF-beta1-induced lung vascular barrier dysfunction, J. Cell Physiol., 204, 934–947.

    PubMed  CAS  Google Scholar 

  126. Birukova, A. A., Adyshev, D., Gorshkov, B., Bokoch, G. M., Birukov, K. G., and Verin, A. D. (2006) GEF-H1 is involved in agonist-induced human pulmonary endothelial barrier dysfunction, Am. J. Physiol. Lung Cell Mol. Physiol., 290, 540–548.

    Google Scholar 

  127. Sehrawat, S., Cullere, X., Patel, S., Italiano, J., Jr., and Mayadas, T. N. (2008) Role of Epac1, an exchange factor for Rap GTPases, in endothelial microtubule dynamics and barrier function, Mol. Biol. Cell, 19, 1261–1270.

    PubMed  CAS  PubMed Central  Google Scholar 

  128. Tian, X., Tian, Y., Sarich, N., Wu, T., and Birukova, A. A. (2012) Novel role of stathmin in microtubule-dependent control of endothelial permeability, FASEB J., 26, 3862–3874.

    PubMed  CAS  PubMed Central  Google Scholar 

  129. Lucas, R., Yang, G., Gorshkov, B. A., Zemskov, E. A., Sridhar, S., Umapathy, N. S., Jezierska-Drutel, A., Alieva, I. B., Leustik, M., Hossain, H., Fischer, B., Catravas, J. D., Verin, A. D., Pittet, J. F., Caldwell, R. B., Mitchell, T. J., Cederbaum, S. D., Fulton, D. J., Matthay, M. A., Caldwell, R. W., Romero, M. J., and Chakraborty, T. (2012) Protein kinase C-α and arginase I mediate pneumolysin-induced pulmonary endothelial hyperpermeability, Am. J. Respir. Cell Mol. Biol., 47, 445–453.

    PubMed  CAS  PubMed Central  Google Scholar 

  130. Umapathy, N. S., Fan, Z., Zemskov, E. A., Alieva, I. B., Black, S. M., and Verin, A. D. (2010) Molecular mechanisms involved in adenosine-induced endothelial cell barrier enhancement, Vascul. Pharmacol., 52, 199–206.

    PubMed  CAS  Google Scholar 

  131. Waterman-Storer, C. M., and Salmon, E. D. (1999) Positive feedback interactions between microtubule and actin dynamics during cell motility, Curr. Opin. Cell Biol., 11, 61–67.

    PubMed  CAS  Google Scholar 

  132. Akhmanova, A., and Hoogenraad, C. C. (2005) Microtubule plus-end-tracking proteins: mechanisms and functions, Curr. Opin. Cell Biol., 17, 47–54.

    PubMed  CAS  Google Scholar 

  133. Akhmanova, A., Stehbens, S. J., and Yap, A. S. (2009) Touch, grasp, deliver and control: functional cross-talk between microtubules and cell adhesions, Traffic, 10, 268–274.

    PubMed  CAS  Google Scholar 

  134. Schober, J. M., Komarova, Y. A., Chaga, O. Y., Akhmanova, A., and Borisy, G. G. (2007) Microtubule-targeting-dependent reorganization of filopodia, J. Cell Sci., 120, 1235–1244.

    PubMed  CAS  Google Scholar 

  135. Watanabe, T., Noritake, J., and Kaibuchi, K. (2005) Roles of IQGAP1 in cell polarization and migration, Novartis Found Symp., 269, 92–101.

    PubMed  CAS  Google Scholar 

  136. Waterman-Storer, C. M., Salmon, W. C., and Salmon, E. D. (2000) Feedback interactions between cell-cell adherens junctions and cytoskeletal dynamics in newt lung epithelial cells, Mol. Biol. Cell, 11, 2471–2483.

    PubMed  CAS  PubMed Central  Google Scholar 

  137. Shahbazi, M. N., Megias, D., Epifano, C., Akhmanova, A., Gundersen, G. G., Fuchs, E., and Perez-Moreno, M. (2013) CLASP2 interacts with p120-catenin and governs microtubule dynamics at adherens junctions, J. Cell Biol., 203, 1043–1061.

    PubMed  CAS  PubMed Central  Google Scholar 

  138. Van der Vaart, B., van Riel, W. E., Doodhi, H., Kevenaar, J. T., Katrukha, E. A., Gumy, L., Bouchet, B. P., Grigoriev, I., Spangler, S. A., Yu, K. L., Wulf, P. S., Wu, J., Lansbergen, G., van Battum, E. Y., Pasterkamp, R. J., Mimori-Kiyosue, Y., Demmers, J., Olieric, N., Maly, I. V., Hoogenraad, C. C., and Akhmanova, A. (2013) CFEOM1-associated kinesin KIF21A is a cortical microtubule growth inhibitor, Dev. Cell, 27, 145–160.

    PubMed  Google Scholar 

  139. Akhmanova, A., Hoogenraad, C. C., Drabek, K., Stepanova, T., Dortland, B., Verkerk, T., Vermeulen, W., Burgering, B. M., De Zeeuw, C. I., Grosveld, F., and Galjart, N. (2001) Clasps are CLIP-115 and -170 associating proteins involved in the regional regulation of microtubule dynamics in motile fibroblasts, Cell, 104, 923–935.

    PubMed  CAS  Google Scholar 

  140. Mimori-Kiyosue, Y., Grigoriev, I., Lansbergen, G., Sasaki, H., Matsui, C., Severin, F., Galjart, N., Grosveld, F., Vorobiev, I., Tsukita, S., and Akhmanova, A. (2005) CLASP1 and CLASP2 bind to EB1 and regulate microtubule plus-end dynamics at the cell cortex, J. Cell Biol., 68, 141–153.

    Google Scholar 

  141. Tsvetkov, A. S., Samsonov, A., Akhmanova, A., Galjart, N., and Popov, S. V. (2007) Microtubule-binding proteins CLASP1 and CLASP2 interact with actin filaments, Cell Motil. Cytoskeleton, 64, 519–530.

    PubMed  CAS  Google Scholar 

  142. Tanenbaum, M. E., Macurek, L., van der Vaart, B., Galli, M., Akhmanova, A., and Medema, R. H. (2011) A complex of Kif18b and MCAK promotes microtubule depolymerization and is negatively regulated by Aurora kinases, Curr. Biol., 21, 1356–1365.

    PubMed  CAS  Google Scholar 

  143. Nakaya, Y., Sukowati, E. W., and Sheng, G. (2013) Epiblast integrity requires CLASP and dystroglycan-mediated microtubule anchoring to the basal cortex, J. Cell Biol., 202, 637–651.

    PubMed  CAS  PubMed Central  Google Scholar 

  144. Akhmanova, A., and Steinmetz, M. O. (2011) Microtubule end binding: EBs sense the guanine nucleotide state, Curr. Biol., 21, 283–285.

    Google Scholar 

  145. Kita, K., Wittmann, T., Nathke, I. S., and Waterman-Storer, C. M. (2006) Adenomatous polyposis coli on microtubule plus ends in cell extensions can promote microtubule net growth with or without EB1, Mol. Biol. Cell, 17, 2331–2345.

    PubMed  CAS  PubMed Central  Google Scholar 

  146. Myers, K. A., Applegate, K. T., Danuser, G., Fischer, R. S., and Waterman, C. M. (2011) Distinct ECM mechanosensing pathways regulate microtubule dynamics to control endothelial cell branching morphogenesis, J. Cell Biol., 192, 321–334.

    PubMed  CAS  PubMed Central  Google Scholar 

  147. Lyle, K. S., Corleto, J. A., and Wittmann, T. (2012) Microtubule dynamics regulation contributes to endothelial morphogenesis, Bioarchitecture, 2, 220–227.

    PubMed  PubMed Central  Google Scholar 

  148. Kirschner, M. W., and Mitchison, T. (1986) Microtubule dynamics, Nature, 324, 621.

    PubMed  CAS  Google Scholar 

  149. Smurova, K. M., Birukova, A. A., Garsia, G., Vorobjev, I. A., Alieva, I. B., and Verin, A. D. (2004) Reorganization of the microtubule system in the pulmonary endothelium cells in response to treatment with thrombin, Tsitologiya, 46, 695–703.

    CAS  Google Scholar 

  150. Czikora, I., Sridhar, S., Gorshkov, B., Alieva, I. B., Kasa, A., Gonzales, J., Potapenko, O., Umapathy, N. S., Pillich, H., Rick, F. G., Block, N. L., Verin, A. D., Chakraborty, T., Matthay, M. A., Schally, A. V., and Lucas, R. (2014) Protective effect of growth hormone-releasing hormone agonist in bacterial toxin-induced pulmonary barrier dysfunction, Front. Physiol., 5, 1–10.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. B. Alieva.

Additional information

Original Russian Text © I. B. Alieva, 2014, published in Biokhimiya, 2014, Vol. 79, No. 9, pp. 1188–1200.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alieva, I.B. Role of microtubule cytoskeleton in regulation of endothelial barrier function. Biochemistry Moscow 79, 964–975 (2014). https://doi.org/10.1134/S0006297914090119

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297914090119

Key words

Navigation