Skip to main content
Log in

Post-reproductive life span and demographic stability

  • Phenoptosis
  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Recent field studies suggest that it is common in nature for animals to outlive their reproductive viability. Post-reproductive life span has been observed in a broad range of vertebrate and invertebrate species. But post-reproductive life span poses a paradox for traditional theories of life history evolution. The commonly cited explanation is the “grandmother hypothesis”, which applies only to higher, social mammals. We propose that post-reproductive life span evolves to stabilize predator-prey population dynamics, avoiding local extinctions. In the absence of senescence, juveniles would be the most susceptible age class. If juveniles are the first to disappear when predation pressure is high, this amplifies the population’s risk of extinction. A class of older, senescent individuals can help shield the juveniles from predation, stabilizing demographics and avoiding extinction. If, in addition, the life history is arranged so that the older individuals are no longer fertile, the stabilizing effect is further enhanced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. McAuliffe, K., and Whitehead, H. (2005) Trends Ecol. Evol., 20, 650.

    Article  PubMed  Google Scholar 

  2. Packer, C., Tatar, M., and Collins, A. (1998) Nature, 392, 807–811.

    Article  PubMed  CAS  Google Scholar 

  3. Austad, S. (1993) J. Zool. London, 229, 695–708.

    Article  Google Scholar 

  4. Ottinger, M. A., and Balthazart, J. (1986) Horm. Behav., 20, 83–94.

    Article  PubMed  CAS  Google Scholar 

  5. Holmes, D. J., and Ottinger, M. A. (2003) Exp. Gerontol., 38, 1365–1375.

    Article  PubMed  CAS  Google Scholar 

  6. Reznick, D., Bryant, M., and Holmes, D. (2006) PLoS Biol., 4, e7.

    Article  PubMed  Google Scholar 

  7. Gosden, R. G., Laing, S. C., Felicio, L. S., Nelson, J. F., and Finch, C. E. (1983) Biol. Reprod., 28, 255–260.

    Article  PubMed  CAS  Google Scholar 

  8. Goranson, N., Ebersole, J., and Brault, S. (2005) Evol. Ecol. Res., 7, 325–333.

    Google Scholar 

  9. Minois, N., Frajnt, M., Wilson, C., and Vaupel, J. W. (2005) Proc. Natl. Acad. Sci. USA, 102, 402–406.

    Article  PubMed  CAS  Google Scholar 

  10. Cohen, A. A. (2004) Biol. Rev. Camb. Philos. Soc., 79, 733–750.

    Article  PubMed  Google Scholar 

  11. Lahdenpera, M., Lummaa, V., Helle, S., Tremblay, M., and Russell, A. F. (2004) Nature, 428, 178–181.

    Article  PubMed  Google Scholar 

  12. Kachel, A. F., Premo, L. S., and Hublin, J. J. (2011) Proc. Biol. Sci., 278, 384–391.

    Article  PubMed  Google Scholar 

  13. Kirkwood, T. (1977) Nature, 270, 301–304.

    Article  PubMed  CAS  Google Scholar 

  14. Williams, G. (1957) Evolution, 11, 398–411.

    Article  Google Scholar 

  15. Maynard Smith, J. (1976) Q. Rev. Biol., 51, 277–283.

    Article  Google Scholar 

  16. Wilson, D. S. (1997) The American Naturalist, 150(S1), S1–S21.

    Article  PubMed  Google Scholar 

  17. Price, G. R. (1970) Nature, 227, 520–521.

    Article  PubMed  CAS  Google Scholar 

  18. Wright, S. (1931) Genetics, 16, 97–159.

    PubMed  CAS  Google Scholar 

  19. Gilpin, M. E. (1975) Group Selection in Predator-Prey Communities, Princeton University Press, Princeton.

    Google Scholar 

  20. Mitteldorf, J. (2006) Evol. Ecol. Res., 8, 561–574.

    Google Scholar 

  21. Borrello, M. (2010) Evolutionary Restraints: the Contentious History of Group Selection, University of Chicago Press, Chicago.

    Book  Google Scholar 

  22. Wynne-Edwards, V. (1962) Animal Dispersion in Relation to Social Behavior, Oliver & Boyd, Edinburgh.

    Google Scholar 

  23. May, R. M. (1973) Stability and Complexity in Model Ecosystems, Princeton University Press.

    Google Scholar 

  24. Thomas, W. R., Pomerantz, M. J., and Gilpin, M. E. (1980) Ecology, 61, 1312–1320.

    Article  Google Scholar 

  25. Ferriere, R., and Fox, G. A. (1995) Trends Ecol. Evol., 10, 480–485.

    Article  PubMed  CAS  Google Scholar 

  26. Heckel, D. G., and Roughgarden, J. (1980) Proc. Natl. Acad. Sci. USA, 77, 7497–7500.

    Article  PubMed  CAS  Google Scholar 

  27. Turelli, M., and Petry, D. (1980) Proc. Natl. Acad. Sci. USA, 77, 7501–7505.

    Article  PubMed  CAS  Google Scholar 

  28. Mueller, L. D., and Joshi, A. (2000) Stability in Model Populations. Monographs in Population Biology (Levin, S. A., and Horn, H. S., eds.) Vol. 31, Princeton University Press, Princeton.

  29. Mitteldorf, J. (2004) Evol. Ecol. Res., 6, 1–17.

    Google Scholar 

  30. Mitteldorf, J. (2010) in Approaches to the Control of Aging: Building a Pathway to Human Life Extension (Fahy, G. M., et al., eds.) Springer, New York.

  31. Mitteldorf, J., and Pepper, J. (2004) Selection in Ecosystems, Fifth Int. Conf. on Complex Systems, NECSI, Boston, MA.

    Google Scholar 

  32. Lotka, A. J. (1925) Elements of Physical Biology, Williams and Wilkins, Baltimore.

    Google Scholar 

  33. Volterra, V. (1931) in Animal Ecology (Chapman, R. N., ed.) McGraw-Hill.

  34. Rosenzweig, M. L. (1971) Science, 171, 385–387.

    Article  PubMed  CAS  Google Scholar 

  35. Ricklefs, R. (1998) Am. Nat., 152, 24–44.

    Article  PubMed  CAS  Google Scholar 

  36. Bonduriansky, R., and Brassil, C. E. (2002) Nature, 420, 377.

    Article  PubMed  CAS  Google Scholar 

  37. Bonduriansky, R., and Brassil, C. E. (2005) J. Evol. Biol., 18, 1332–1340.

    Article  PubMed  CAS  Google Scholar 

  38. Nussey, D. H., Froy, H., Lemaitre, J. F., Gaillard, J. M., and Austad, S. N. (2012) Ageing Res. Rev., 12, 214–225.

    Article  PubMed  Google Scholar 

  39. Nudds, T. (1987) in Wild Furbearer Management and Conservation in North America (Novak, M. B., Obbard, J., M., and Mallock, B., eds.) Ontario Trappers Assn., Toronto.

  40. Rand, D. A., Keeling, M., and Wilson, H. B. (1995) Proc. Roy. Soc. B, 259, 55–63.

    Article  Google Scholar 

  41. Abrams, P. A. (2000) Ann. Rev. Ecol. Sys., 31, 79–105.

    Article  Google Scholar 

  42. Cuddington, K., and Yodzis, P. (2002) Am. Nat., 160, 119–134.

    Article  PubMed  Google Scholar 

  43. Pels, B., de Roos, A. M., and Sabelis, M. W. (2002) Am. Nat., 159, 172–189.

    Article  PubMed  Google Scholar 

  44. Pepper, J. W., and Smuts, B. B. (2002) Am. Nat., 160, 205–213.

    Article  PubMed  Google Scholar 

  45. Rauch, E. M., Sayama, H., and Bar-Yam, Y. (2003) J. Theor. Biol., 221, 655–664.

    Article  PubMed  Google Scholar 

  46. Loreau, M., and Ebenhoh, W. (1994) Theor. Popul. Biol., 46, 58–77.

    Article  PubMed  CAS  Google Scholar 

  47. Moll, J. D., and Brown, J. S. (2008) Am. Nat., 171, 839–843.

    Article  PubMed  Google Scholar 

  48. Medawar, P. B. (1952) An Unsolved Problem of Biology, Published for the College by H. K. Lewis, London.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. J. Mitteldorf.

Additional information

Published in Russian in Biokhimiya, 2013, Vol. 78, No. 9, pp. 1293–1305.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mitteldorf, J.J., Goodnight, C. Post-reproductive life span and demographic stability. Biochemistry Moscow 78, 1013–1022 (2013). https://doi.org/10.1134/S0006297913090071

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297913090071

Key words

Navigation