Skip to main content
Log in

Actin isoforms and reorganization of adhesion junctions in epithelial-to-mesenchymal transition of cervical carcinoma cells

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Malignant cell transformation requires changes in the ability of cells to migrate. The disruption of actin cytoskeleton and intercellular adhesions is an important component of the acquisition of invasive properties in epithelial malignancies. The invasive ability of carcinoma cells is associated with reduced expression of adhesion junction molecules and increased expression of mesenchymal markers, frequently referred to as epithelial-to-mesenchymal transition (EMT). Standard features of the EMT program in cancer cells include fibroblastic phenotype, downregulation of the epithelial marker E-cadherin, induction of Snail-family transcription factors, as well as expression of mesenchymal proteins. We compared the epithelial and mesenchymal marker profiles of nonmalignant HaCaT keratinocytes to the corresponding profiles of cervical carcinoma cell lines C-33A, SiHa, and CaSki. The characteristics of the EMT appeared to be more developed in SiHa and CaSki cervical cancer cells. Further activation of the EMT program in cancer cells was induced by epidermal growth factor. Decreased epithelial marker E-cadherin in CaSki cells was accompanied by increased mesenchymal markers N-cadherin and vimentin. Downregulated expression of E-cadherin in SiHa and CaSki cells was associated with increased expression of Snail transcription factor. Our goal was to study actin reorganization in the EMT process in cell cultures and in tissue. We found that β-cytoplasmic actin structures are disorganized in the cervical cancer cells. The expression of β-cytoplasmic actin was downregulated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

EGF:

epidermal growth factor

EMT:

epithelial-to-mesenchymal transition

References

  1. Acloque, H., Adams, M. S., Fishwick, K., Bronner-Fraser, M., and Nieto, M. A. (2009) J. Clin. Invest., 119, 1438–1449.

    Article  PubMed  CAS  Google Scholar 

  2. Lee, J. M., Dedhar, S., Kalluri, R., and Thompson, E. W. (2006) J. Cell Biol., 172, 973–981.

    Article  PubMed  CAS  Google Scholar 

  3. Moustakas, A., and Heldin, C.-H. (2007) Cancer Sci., 98, 1512–1520.

    Article  PubMed  CAS  Google Scholar 

  4. Zeisberg, M., and Neilson, E. G. (2009) J. Clin. Invest., 119, 1429–1437.

    Article  PubMed  CAS  Google Scholar 

  5. Thiery, J. P. (2002) Nat. Rev. Cancer, 2, 442–454.

    Article  PubMed  CAS  Google Scholar 

  6. Friedl, P. (2004) Curr. Opin. Cell Biol., 16, 14–23.

    Article  PubMed  CAS  Google Scholar 

  7. Brockmann, C., Huarte, J., Dugina, V., Challet, L., Rey, E., Conne, B., Swetloff, A., Nef, S., Chaponnier, C., and Vassalli, J. D. (2011) Biol. Reprod., 85, 1025–1039.

    Article  PubMed  CAS  Google Scholar 

  8. Bergeron, S. E., Zhu, M., Thiem, S. M., Friderici, K. H., and Rubenstein, P. A. (2010) J. Biol. Chem., 285, 16087–16095.

    Article  PubMed  CAS  Google Scholar 

  9. Dugina, V., Zwaenepoel, I., Gabbiani, G., Clement, S., and Chaponnier, C. (2009) J. Cell. Sci., 122, 2980–2988.

    Article  PubMed  CAS  Google Scholar 

  10. Orban, J., Lorinczy, D., Nyitrai, M., and Hild, G. (2008) Biochem. Biophys. Res. Commun., 368, 696–702.

    Article  PubMed  CAS  Google Scholar 

  11. Khaitlina, S., and Hinssen, H. (2008) Arch. Biochem. Biophys., 477, 279–284.

    Article  PubMed  CAS  Google Scholar 

  12. Khaitlina, S. (2007) Tsitologiya, 49, 345–354.

    Google Scholar 

  13. Pokorna, E., Jordan, P. W., O’Neill, C. H., Zicha, D., Gilbert, C. S., and Vesely, P. (1994) Cell Motil. Cytoskeleton, 28, 25–33.

    Article  PubMed  CAS  Google Scholar 

  14. Sahai, E., and Marshall, C. J. (2003) Nat. Cell Biol., 5, 711–719.

    Article  PubMed  CAS  Google Scholar 

  15. Benedet, J. L., Bender, H., Jones, H., 3rd, Ngan, H. Y., and Pecorelli, S. (2000) Int. J. Gynaecol. Obstet., 70, 209–262.

    Article  PubMed  CAS  Google Scholar 

  16. Wheelock, M. J., Soler, A. P., and Knudsen, K. A. (2001) J. Mammary Gland Biol. Neoplasia, 6, 275–285.

    Article  PubMed  CAS  Google Scholar 

  17. Peinado, H., Olmeda, D., and Cano, A. (2007) Nat. Rev. Cancer, 7, 415–428.

    Article  PubMed  CAS  Google Scholar 

  18. Bolos, V., Peinado, H., Perez-Moreno, M. A., Fraga, M. F., Esteller, M., and Cano, A. (2003) J. Cell Sci., 116, 499–511.

    Article  PubMed  CAS  Google Scholar 

  19. Leung, C. T., and Brugge, J. S. (2012) Nature, 482, 410–413.

    Article  PubMed  CAS  Google Scholar 

  20. Prasad, N. K., and Decker, S. J. (2005) J. Biol. Chem., 280, 13129–13136.

    Article  PubMed  CAS  Google Scholar 

  21. Yamaguchi, H., and Condeelis, J. (2007) Biochim. Biophys. Acta, 1773, 642–652.

    Article  PubMed  CAS  Google Scholar 

  22. Harborth, J., Elbashir, S. M., Bechert, K., Tuschl, T., and Weber, K. (2001) J. Cell. Sci., 114, 4557–4565.

    PubMed  CAS  Google Scholar 

  23. Tondeleir, D., Lambrechts, A., Mueller, M., Jonckheere, V., Doll, T., Vandamme, D., Bakkali, K., Waterschoot, D., Lemaistre, M., Debeir, O., Decaestecker, C., Hinz, B., Staes, A., Timmerman, E., Colaert, N., Gevaert, K., Vandekerckhove, J., and Ampe, C. (2012) Mol. Cell Proteom., 11, 255–271.

    Article  Google Scholar 

  24. Vandekerckhove, J., Leavitt, J., Kakunaga, T., and Weber, K. (1980) Cell, 22, 893–899.

    Article  PubMed  CAS  Google Scholar 

  25. Leavitt, J., Ng, S. Y., Varma, M., Latter, G., Burbeck, S., Gunning, P., and Kedes, L. (1987) Mol. Cell Biol., 7, 2467–2476.

    PubMed  CAS  Google Scholar 

  26. Sadano, H., Taniguchi, S., Kakunaga, T., and Baba, T. (1988) J. Biol. Chem., 263, 15868–15871.

    PubMed  CAS  Google Scholar 

  27. Dugina, V. B., Chipysheva, T. A., Ermilova, V. D., Gabbiani, D., Chaponnier, C., and Vasil’ev, Iu. M. (2008) Arkh. Patol., 70, 28–31.

    PubMed  CAS  Google Scholar 

  28. Dugina, V. B., Ermilova, V. D., Chemeris, G. Iu., and Chipysheva, T. A. (2010) Arkh. Patol., 72, 12–15.

    PubMed  CAS  Google Scholar 

  29. Condeelis, J., and Singer, R. H. (2005) Biol. Cell, 97, 97–110.

    Article  PubMed  CAS  Google Scholar 

  30. Shum, M. S., Pasquier, E., Po’uha, S. T., O’Neill, G. M., Chaponnier, C., Gunning, P. W., and Kavallaris, M. (2011) FASEB J., 25, 4423–4433.

    Article  PubMed  CAS  Google Scholar 

  31. Cannito, S., Novo, E., di Bonzo, L. V., Busletta, C., Colombatto, S., and Parola, M. (2010) Antioxid. Redox Signal., 12, 1383–1430.

    Article  PubMed  CAS  Google Scholar 

  32. Takeichi, M. (1995) Curr. Opin. Cell Biol., 7, 619–627.

    Article  PubMed  CAS  Google Scholar 

  33. Hirohashi, S. (1998) Am. J. Pathol., 153, 333–339.

    Article  PubMed  CAS  Google Scholar 

  34. Berx, G., and van Roy, F. (2001) Breast Cancer Res., 3, 289–293.

    Article  PubMed  CAS  Google Scholar 

  35. Van Aken, E., De Wever, O., Correia da Rocha, A. S., and Mareel, M. (2001) Virchows Arch., 439, 725–751.

    PubMed  Google Scholar 

  36. Cavallaro, U., and Christofori, G. (2004) Nat. Rev. Cancer, 4, 118–132.

    Article  PubMed  CAS  Google Scholar 

  37. Yoshiura, K., Kanai, Y., Ochiai, A., Shimoyama, Y., Sugimura, T., and Hirohashi, S. (1995) Proc. Natl. Acad. Sci. USA, 92, 7416–7419.

    Article  PubMed  CAS  Google Scholar 

  38. Berx, G., Becker, K. F., Hofler, H., and van Roy, F. (1998) Hum. Mutat., 12, 226–237.

    Article  PubMed  CAS  Google Scholar 

  39. Hajra, K. M., Ji, X., and Fearon, E. R. (1999) Oncogene, 18, 7274–7279.

    Article  PubMed  CAS  Google Scholar 

  40. Tsao, S. W., Liu, Y., Wang, X., Yuen, P. W., Leung, S. Y., Yuen, S. T., Pan, J., Nicholls, J. M., Cheung, A. L., and Wong, Y. C. (2003) Eur. J. Cancer, 39, 524–531.

    Article  PubMed  CAS  Google Scholar 

  41. Xiao, K., Oas, R. G., Chiasson, C. M., and Kowalczyk, A. P. (2007) Biochim. Biophys. Acta, 1773, 8–16.

    Article  PubMed  CAS  Google Scholar 

  42. Nieman, M. T., Prudoff, R. S., Johnson, K. R., and Wheelock, M. J. (1999) J. Cell Biol., 147, 631–644.

    Article  PubMed  CAS  Google Scholar 

  43. Tomita, K., van Bokhoven, A., van Leenders, G. J., Ruijter, E. T., Jansen, C. F., Bussemakers, M. J., and Schalken, J. A. (2000) Cancer Res., 60, 3650–3654.

    PubMed  CAS  Google Scholar 

  44. Hazan, R. B., Phillips, G. R., Qiao, R. F., Norton, L., and Aaronson, S. A. (2000) J. Cell Biol., 148, 779–790.

    Article  PubMed  CAS  Google Scholar 

  45. Li, G., Satyamoorthy, K., and Herlyn, M. (2001) Cancer Res., 61, 3819–3825.

    PubMed  CAS  Google Scholar 

  46. Gravdal, K., Halvorsen, O. J., Haukaas, S. A., and Akslen, L. A. (2007) Clin. Cancer Res., 13, 7003–7011.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. B. Dugina.

Additional information

Original Russian Text © G. S. Shagieva, L. V. Domnina, T. A. Chipysheva, V. D. Ermilova, C. Chaponnier, V. B. Dugina, 2012, published in Biokhimiya, 2012, Vol. 77, No. 11, pp. 1513–1525.

Originally published in Biochemistry (Moscow) On-Line Papers in Press, as Manuscript BM12-154, October 7, 2012.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shagieva, G.S., Domnina, L.V., Chipysheva, T.A. et al. Actin isoforms and reorganization of adhesion junctions in epithelial-to-mesenchymal transition of cervical carcinoma cells. Biochemistry Moscow 77, 1266–1276 (2012). https://doi.org/10.1134/S0006297912110053

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297912110053

Key words

Navigation