Skip to main content
Log in

Effect of α-crystallin on thermal aggregation of glycogen phosphorylase b from rabbit skeletal muscle

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Thermal aggregation of rabbit skeletal muscle glycogen phosphorylase b (Phb) has been investigated using dynamic light scattering under conditions of a constant rate of temperature increase (1 K/min). The linear behavior of the dependence of the hydrodynamic radius on temperature for Phb aggregation is consistent with the idea that the rmal aggregation of proteins proceeds in the kinetic regime where in the rate of aggregation is limited by diffusion of the interacting particles (the regime of “diffusion-limited cluster-cluster aggregation”). In the presence of α-crystallin, a prote in exhibiting chaperone-like activity, the dependence of the hydrodynamic radius on temperature follows the exponential law; this suggests that the aggregation process proceeds in the kinetic regime where the sticking probability for colliding particles becomes lower than unity (the regime of “reaction-limited cluster-cluster aggregation”). Based on analysis of the ratio between the light scattering intensity and the hydrodynamic radius of Phb aggregates, it has been concluded that the addition of α-crystallin results in formation of smaller size starting aggregates. The data on differential scanning calorimetry indicate that α-crystallin interacts with the intermediates of the unfolding process of the Phb molecule. The proposed scheme of the rmal denaturation and aggregation of Phb includes the stage of reversible dissociation of dimers of Phb into monomers, the stage of the formation of the starting aggregates from the denatured monomers of Phb, and the stage of the sticking of the starting aggregates and higher order aggregates. Dissociation of Phb dimer into monomers at elevated temperatures has been confirmed by analytical ultracentrifugation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

DSC:

differentiation scanning calorimetry

Phb :

glycogen phosphorylase b

HSP:

heat shock protein

References

  1. Fink, A. L. (1998) Folding Des., 3, R9–R23.

    Article  CAS  Google Scholar 

  2. Markossian, K. A., and Kurganov, B. I. (2004) Biochemistry (Moscow), 69, 971–984.

    Article  CAS  Google Scholar 

  3. Hartl, F. U. (1996) Nature, 381, 571–579.

    Article  PubMed  CAS  Google Scholar 

  4. Haslbeck, M. (2002) Cell Mol. Life Sci., 59, 1649–1657.

    Article  PubMed  CAS  Google Scholar 

  5. Ganea, E. (2001) Curr. Prot. Pept. Sci., 2, 1–21.

    Google Scholar 

  6. Horwitz, J. (1992) Proc. Natl. Acad. Sci. USA, 89, 10449–10453.

    Article  PubMed  CAS  Google Scholar 

  7. Abgar, S., Vanhoudt, J., Aerts, T., and Clauwaert, J. (2001) Biophys. J., 80, 1986–1995.

    PubMed  CAS  Google Scholar 

  8. Khanova, H. A., Markossian, K. A., Kurganov, B. I., Samoilov, A. M., Kleimenov, S. Yu., Levitsky, D. I., Yudin, I. K., Timofeeva, A. C., Muranov, K. O., and Ostrovsky, M. A. (2005) Biochemistry, 44, 15480–15487.

    Article  PubMed  CAS  Google Scholar 

  9. Wang, K., and Spector, A. (1994) J. Biol. Chem., 269, 13601–13608.

    PubMed  CAS  Google Scholar 

  10. Surewicz, W. K., and Olesen, P. R. (1995) Biochemistry, 34, 9655–9660.

    Article  PubMed  CAS  Google Scholar 

  11. Augusteyn, R. C. (2004) Clin. Exp. Optom., 87, 356–366.

    Article  PubMed  Google Scholar 

  12. Barford, D., and Johnson, L. H. (1989) Nature, 340, 609–616.

    Article  PubMed  CAS  Google Scholar 

  13. Kornilaev, B. A., Kurganov, B. I., Eronina, T. B., Chebotareva, N. A., Livanova, N. B., Orlov, V. N., and Chernyak, V. Ya. (1997) Mol. Biol. (Moscow), 31, 98–107.

    CAS  Google Scholar 

  14. Kurganov, B. I., Kornilaev, B. A., Eronina, T. B., Livanova, N. B., Chebotareva, N. A., Orlov, V. N., and Chernyak, V. Ya. (1997) Proc. Int. Symp. Dedicated to 90th Anniversary of Academician N. M. Sisakyan (Gazenko, O. G., and Poglazov, B. F., eds.) Joint Institute of Nuclear Studies, Dubna, Vol. 1, pp. 173–189.

    Google Scholar 

  15. Kurganov, B. I., Kornilaev, B. A., Chebotareva, N. A., Malikov, V. P., Orlov, V. N., Lyubarev, A. E., and Livanova, N. B. (2000) Biochemistry, 39, 13144–13152.

    Article  PubMed  CAS  Google Scholar 

  16. Eronina, T. B., Chebotareva, N. A., and Kurganov, B. I. (2001) Biochemistry (Moscow), 66, 449–455.

    Article  CAS  Google Scholar 

  17. Eronina, T. B., Chebotareva, N. A., and Kurganov, B. I. (2005) Biochemistry (Moscow), 70, 1020–1026.

    Article  CAS  Google Scholar 

  18. Markossian, K. A., Kurganov, B. I., Levitsky, D. I., Khanova, H. A., Chebotareva, N. A., Samoilov, A. M., Eronina, T. B., Fedurkina, N. V., Mitskevich, L. G., Merem’yanin, A. V., Kleymenov, S. Yu., Makeeva, V. F., Muronetz, V. I., Naletova, I. N., Shalova, I. N., Asryants, R. A., Schmalhausen, E. V., Saso, L., Panyukov, Yu. V., Dobrov, E. N., Yudin, I. K., Timofeeva, A. C., Muranov, K. O., and Ostrovsky, M. A. (2006) Protein Folding: New Research (Obalinsky, T. R., ed.) Nova Science Publishers Inc, New York, pp. 89–171.

    Google Scholar 

  19. Markossian, K. A., Khanova, H. A., Kleimenov, S. Yu., Levitsky, D. I., Chebotareva, N. A., Asryants, R. A., Muronetz, V. I., Saso, L., Yudin, I. K., and Kurganov, B. I. (2006) Biochemistry, 45, 13375–13384.

    Article  PubMed  CAS  Google Scholar 

  20. Khanova, H. A., Markossian, K. A., Kleimenov, S. Yu., Levitsky, D. I., Chebotareva, N. A., Golub, N. V., Asryants, R. A., Muronetz, V. I., Saso, L., Yudin, I. K., Muranov, K. O., Ostrovsky, M. A., and Kurganov, B. I. (2007) Biophys. Chem., 125, 521–531.

    Article  PubMed  CAS  Google Scholar 

  21. Chiou, S. H., Azari, P., Himmel, M. E., and Squire, P. G. (1979) Int. J. Pept. Protein Res., 13, 409–417.

    Article  PubMed  CAS  Google Scholar 

  22. Fisher, E. H., and Krebs, E. G. (1962) Meth. Enzymol., 5, 368–373.

    Google Scholar 

  23. Kastenschmidt, L. L., Kastenschmidt, J., and Helmreich, E. (1968) Biochemistry, 7, 3590–3607.

    Article  PubMed  CAS  Google Scholar 

  24. Putilina, T., Skouri-Panet, F., Prat, K., Lubsen, N. H., and Tardieu, A. (2003) J. Biol. Chem., 278, 13747–13756.

    Article  PubMed  CAS  Google Scholar 

  25. Privalov, P. L., and Potekhin, S. A. (1986) Meth. Enzymol., 134, 4–51.

    Article  Google Scholar 

  26. Yudin, I. K., Nikolaenko, G. L., Kosov, V. L., Agayan, V. A., Anisimov, M. A., and Sengers, J. V. (1997) Int. J. Thermophys., 18, 1237–1248.

    Article  CAS  Google Scholar 

  27. Schuck, P. (2000) Biophys. J., 78, 1606–1619.

    PubMed  CAS  Google Scholar 

  28. Brown, P. H., and Schuck, P. (2006) Biophys. J., 90, 4651–4661.

    Article  PubMed  CAS  Google Scholar 

  29. Panyukov, Y. V., Yudin, I. K., Drachev, V. A., Dobrov, E. N., and Kurganov, B. I. (2007) Biophys. Chem., 127, 9–18.

    Article  PubMed  CAS  Google Scholar 

  30. Elimelech, M., Gregory, J., Jia, X., and Williams, R. A. (1995) Particle Deposition and Aggregation: Measurement, Modeling and Simulation; Butterworth-Heinemann Ltd., Boston.

    Google Scholar 

  31. Jullien, R., and Botet, R. (1987) Aggregation and Fractal Aggregates, World Scientific Publishing Co. Pte. Ltd., Singapore.

    Google Scholar 

  32. Weitz, D. A., Huang, J. S., Lin, M. Y., and Sung, J. (1985) Phys. Rev. Let., 54, 1416–1419.

    Article  CAS  Google Scholar 

  33. Weitz, D., and Lin, M. (1986) Phys. Rev. Lett., 57, 2037–2040.

    Article  PubMed  CAS  Google Scholar 

  34. Lin, M., Linsday, H., Weitz, D., Ball, R., Klein, R., and Meakin, P. (1989) Proc. R. Soc. Lond. A, 423, 71–87.

    CAS  Google Scholar 

  35. Berka, M., and Rice, J. A. (2005) Langmuir, 21, 1223–1229.

    Article  PubMed  CAS  Google Scholar 

  36. Khanova, E. A. (2006) The Mechanism of Suppression of Protein Aggregation by α-Crystallin: Candidate’s dissertation [in Russian], Bach Institute of Biochemistry, Moscow.

    Google Scholar 

  37. Gunar, V. I., Sugrobova, N. P., Chebotareva, N. A., Stepanova, S. V., Poznanskaya, A. A., and Kurganov, B. I. (1991) in Enzymes Dependent on Pyridoxal Phosphate and Other Carbonyl Compounds as Cofactors (Fukui, T., Kagamiyama, H., Soda, K., and Wada, H., eds.) Pergamon Press, Oxford, pp. 417–419.

    Google Scholar 

  38. Kurganov, B. I. (2002) Biochemistry (Moscow), 67, 409–422.

    Article  CAS  Google Scholar 

  39. Kurganov, B. I., Rafikova, E. R., and Dobrov, E. N. (2002) Biochemistry (Moscow), 67, 525–533.

    Article  CAS  Google Scholar 

  40. Kurganov, B. I. (2002) Tsinghua Sci. Technol., 7, 331–339.

    CAS  Google Scholar 

  41. Kurganov, B. I. (2002) Usp. Biol. Khim., 42, 89–138.

    CAS  Google Scholar 

  42. Wang, K., and Kurganov, B. I. (2003) Biophys. Chem., 106, 97–109.

    Article  PubMed  CAS  Google Scholar 

  43. Kurganov, B. I. (2005) in Chemical and Biological Kinetics. New Horizons. Vol. 2. Biological Kinetics (Burlakova, E. B., and Varfolomeev, S. D., eds.) Koninklijke Brill NV, Leiden, The Netherlands, pp. 251–279.

    Google Scholar 

  44. Oosawa, F., and Kasai, M. (1962) J. Mol. Biol., 4, 10–21.

    Article  PubMed  CAS  Google Scholar 

  45. Rajaraman, K., Raman, B., Ramakrishna, T., and Rao, C. M. (2001) FEBS Lett., 497, 118–123.

    Article  PubMed  CAS  Google Scholar 

  46. Seidler, N. W., and Seibel, I. (2000) Biochem. Biophys. Res. Commun., 277, 47–50.

    Article  PubMed  CAS  Google Scholar 

  47. Yeargans, G. S., and Seidler, N. W. (2003) Biochem. Biophys. Res. Commun., 300, 75–80.

    Article  PubMed  CAS  Google Scholar 

  48. Ali Khan, M. V., Rasheed, Z., Ali Khan, V., and Ali, R. (2007) Biochemistry (Moscow), 71, 146–152.

    Article  CAS  Google Scholar 

  49. Pivovarova, A. V., Mikhailova, V. V., Chernik, I. S., Chebotareva, N. A., Levitsky, D. I., and Gusev, N. B. (2005) Biochem. Biophys. Res. Commun., 331, 1548–1553.

    Article  PubMed  CAS  Google Scholar 

  50. Fedurkina, N. V., Belousova, L. V., Mitskevich, L. N., Zhou, H.-M., Chang, Z., and Kurganov, B. I. (2006) Biochemistry (Moscow), 71, 325–331.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Meremyanin.

Additional information

Original Russian Text © A. V. Meremyanin, T. B. Eronina, N. A. Chebotareva, S. Yu. Kleimenov, I. K. Yudin, K. O. Muronov, M. A. Ostrovsky, B. I. Kurganov, 2007, published in Biokhimiya, 2007, Vol. 72, No. 5, pp. 642–654.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meremyanin, A.V., Eronina, T.B., Chebotareva, N.A. et al. Effect of α-crystallin on thermal aggregation of glycogen phosphorylase b from rabbit skeletal muscle. Biochemistry Moscow 72, 518–528 (2007). https://doi.org/10.1134/S0006297907050082

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297907050082

Key words

Navigation