Skip to main content
Log in

Biochemical characterization of some pyrazolopyrimidine-based inhibitors of xanthine oxidase

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Inhibition of xanthine oxidase-catalyzed conversion of xanthine to uric acid by various pyrazolopyrimidine-based inhibitors (allopurinol derivatives) was evaluated and compared with the standard inhibitor allopurinol. Three compounds out of the seven compounds used in the study were found to be reasonably good inhibitors of xanthine oxidase (XO). 4-Amino-6-mercaptopyrazolo-3,4-d-pyrimidine was found to be the most potent inhibitor of XO (IC50=0.600±0.009 µM). 4-Mercapto-1H-pyrazolo-3,4-d-pyrimidine (IC50=1.326±0.013 µM) and 4-amino-6-hydroxypyrazolo-3,4-d-pyrimidine (IC50=1.564±0.065 µM) also showed inhibitory activity comparable to that of allopurinol (IC50 = 0.776 ± 0.012 µM). All three compounds showed competitive type of inhibition with comparable K i values. Induction of the electron transfer reaction catalyzed by XO in the presence of these compounds monitored as reduction of 2,6-dichlorophe nolindophenol (DCPIP) revealed that electron transfer by 4-amino-6-mercaptopyrazolo-3,4-d-pyrimidine is comparable to that obtained by allopurinol or xanthine. However, 4-mercapto-1H-pyrazolo-3,4-d-pyrimidine and 4-amino-6-hydroxypyrazolo-3,4-d-pyrimidine did not show DCPIP reduction. On the other hand, enzymatic reduction of cytochrome c in the presence of the three compounds was found to be insignificant and much less in comparison to allopurinol and xanthine. Therefore, both 4-amino-6-hydroxypyrazolo-3,4-d-pyrimidine and 4-mercapto-1H-pyrazolo-3,4-d-pyrimidine displayed the inhibitory property and also did not produce XO-mediated reactive oxygen species (ROS). Since 4-mercapto-1H-pyrazolo-3,4-d-pyrimidine was found to have some toxicity, the effect of 4-amino-6-hydroxypyrazolo-3,4-d-pyrimidine on the enzymatic formation of uric acid and ROS was investigated and it was found that this compound inhibited enzymatic generation of both uric acid and ROS. It can be noted that the standard inhibitor, allopurinol, inhibits uric acid formation but produces ROS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

XO:

xanthine oxidase

DCPIP:

2,6-dichlorophenolindophenol

ROS:

reactive oxygen species

References

  1. Hille, R., and Nishino, T. (1995) FASEB J., 9, 995–1003.

    CAS  PubMed  Google Scholar 

  2. Krenitsky, T. A., Spector, T., and Hall, W. W. (1986) Arch. Biochem. Biophys., 247, 108–119.

    Article  CAS  PubMed  Google Scholar 

  3. Rodnan, G. P. (1982) Bull. Rheum. Dis., 32, 43–53.

    CAS  PubMed  Google Scholar 

  4. McCord, J. M. (1985) N. Engl. J. Med., 312, 159–163.

    CAS  PubMed  Google Scholar 

  5. Nakamura, M. (1991) J. Biochem. (Tokyo), 110, 450–456.

    CAS  Google Scholar 

  6. Massey, V., Komai, H., Palmer, G., and Elion, G. B. (1970) J. Biol. Chem., 245, 2837–2844.

    CAS  PubMed  Google Scholar 

  7. Spector, T., and Johns, D. G. (1970) J. Biol. Chem., 245, 5079–5085.

    CAS  PubMed  Google Scholar 

  8. Oettl, K., and Reibnegger, G. (1999) Biochim. Biophys. Acta, 1430, 387–395.

    CAS  PubMed  Google Scholar 

  9. Okamoto, K., Eger, B. T., Nishino, T., Kondo, S., and Pai, E. F. (2003) J. Biol. Chem., 278, 1848–1855.

    CAS  PubMed  Google Scholar 

  10. Ishibuchi, S., Morimoto, H., Oe, T., Ikebe, T., Inoue, H., Fukunari, A., Kamezawa, M., Yamada, I., and Naka, Y. (2001) Bioorg. Med. Chem. Lett., 11, 879–882.

    Article  CAS  PubMed  Google Scholar 

  11. Okamoto, K., Matsumoto, K., Hille, R., Eger, B. T., Pai, E. F., and Nishino, T. (2004) Proc. Natl. Acad. Sci. USA, 101, 7931–7936.

    Article  CAS  PubMed  Google Scholar 

  12. Lin, C. M., Chen, C. S., Chen, C. T., Liang, Y. C., and Lin, J. K. (2002) Biochem. Biophys. Res. Commun., 294, 167–172.

    Article  CAS  PubMed  Google Scholar 

  13. Van Hoom, D. E., Nijveldt, R. J., van Leeuwen, P. A., Hofman, Z., M’Rabet, L., De Bont, D. B., and van Norren, K. (2002) Eur. J. Pharmacol., 451, 111–118.

    Google Scholar 

  14. Tamta, H., Thilagavathi, R., Chakraborti, A. K., and Mukhopadhyay, A. K. (2005) J. Enzyme Inhibition Med. Chem., 20, 317–324.

    CAS  Google Scholar 

  15. Escribano, J., Gracia-Canovas, F., and Gracia-Carmona, F. (1988) Biochem. J., 254, 829–833.

    CAS  PubMed  Google Scholar 

  16. Godner, B. L. J., Doel, J. J., Goult, T. A., Eisenthal, R., and Harrison, R. (2001) Biochem. J., 358, 325–333.

    Google Scholar 

  17. Hodges, G. R., Young, M. J., Paul, T., and Ingold, K. U. (2000) Free Rad. Biol. Med., 29, 434–441.

    Article  CAS  PubMed  Google Scholar 

  18. Liochev, S. I., and Fridovich, I. (2002) J. Biol. Chem., 277, 34674–34678.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anup K. Mukhopadhyay.

Additional information

Originally published in Biochemistry (Moscow) On-Line Papers in Press, as Manuscript BM05-106, October 2, 2005.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tamta, H., Kalra, S. & Mukhopadhyay, A.K. Biochemical characterization of some pyrazolopyrimidine-based inhibitors of xanthine oxidase. Biochemistry (Moscow) 71 (Suppl 1), S49–S54 (2006). https://doi.org/10.1134/S0006297906130086

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297906130086

Key words

Navigation