Skip to main content
Log in

A Suite of Intelligent Tools for Early Detection and Prevention of Blackouts in Power Interconnections

  • Control Problems for the Development of Large-Scale Systems
  • Published:
Automation and Remote Control Aims and scope Submit manuscript

Abstract

We propose a suite of intelligent tools based on the integration of methods of agent modeling and machine learning for the improvement of protection systems and emergency automatics. We propose an online approach to the assessment and management of dynamic security of electric power systems (EPS) with the use of a streaming modification of the random forest algorithm. The suite allows to recognize dangerous modes of complex closed-loop EPS, preventing the risk of emergencies on early stages. We show results of experimental tests on IEEE test systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Voropai, N.I., Tomin, N.V., Kurbatskii, V.G., et al., Kompleks intellektual’nykh sredstv dlya predotvrashcheniya krupnykh avarii v elektroenergeticheskikh sistemakh (A Suite of Intelligent Means of Prevention Large-Scale Failures in Electric Power Systems), Novosibirsk: Nauka, 2016.

    Google Scholar 

  2. Voropai, N.I. and Saratova, N.E., Analyzing the Statistics of RZA Failures Based on Microprocessors from the Point of View of Accounting for them in Modeling Cascade Failures, Probl. Energetiki, 2008, no. 11/12 (1), pp. 66–71.

    Google Scholar 

  3. Voropai, N.I., Snizhenie riskov kaskadnykh avarii v elektroenergeticheskikh sistemakh (Reducing the Risks of Cascade Failures in Electric Power Systems), Novosibirsk: Sib. Otd. Ross. Akad. Nauk, 2011.

    Google Scholar 

  4. IEEE PES CAMS Task Force on Understanding, Prediction, Mitigation and Restoration of Cascading Failures, “Initial Review of Methods for Cascading Failure Analysis in Electric Power Transmission Systems,” Proc. IEEE PES General Meeting, Pittsburgh, July, 2008.

  5. Negnevitsky, M., An Expert System Application for Clearing Overloads, Int. J. Power Energy Syst., 1995, vol. 15, no. 1, pp. 9–13.

    Google Scholar 

  6. Barkans, E. and Zhalostiba, D., Zashchita ot razvalov i samovosstanovlenie energosistem (Protection against Critical Failures and Self-Restoration of Power Systems), Cheboksary: RITs “SRZAU,” 2014.

    Google Scholar 

  7. Kessel, P. and Glavitsch, H., Estimating the Voltage Stability of a Power System, IEEE Trans. Power Delivery, 1986, vol. 1, no. 3, pp. 346–354.

    Article  Google Scholar 

  8. Voitov, O.N., Voropai, N.I., Gamm, A.Z., et al., Analiz neodnorodnostei elektroenergeticheskikh sistem (Analysis of Nonuniformities in Electric Power Systems), Novosibirsk: Nauka, 1999.

    Google Scholar 

  9. Goh, H., Comparative Study of Different Kalman Filter Implementations in Power System Stability, Am. J. Appl. Sci., 2014, vol. 11, no. 8, pp. 1379–1390.

    Article  Google Scholar 

  10. Karbalaei, F., Soleymani, H., and Afsharnia, S., A Comparison of Voltage Collapse Proximity Indicators, IPEC, 2010 Conf. Proc., 2010, pp. 429–432.

    Chapter  Google Scholar 

  11. Sayed Shah, D.M., Voltage Stability in Electric Power System: A Practical Introduction, Berlin: Logos Verlag, 2015.

    Google Scholar 

  12. Kurbatsky, V.G., Sidorov, D.N., Spiryaev, V.A., and Tomin, N.V., The Hybrid Model Based on Hilbert-Huang Transform and Neural Networks for Forecasting of Short-Term Operation Conditions of Power Systems, Proc. IEEE PES Trondheim PowerTech, Trondheim, 2011, pp. 1–7.

    Google Scholar 

  13. Zhukov, A., Tomin, N., Sidorov, D., Panasetsky, D., and Spirayev, V., A Hybrid Artificial Neural Network for Voltage Security Evaluation in a Power System, Proc. 2015 Int. Youth Con. Energy (IYCE), Pisa, 2015, pp. 1–8.

    Google Scholar 

  14. Kurbatsky, V., Tomin, N., Sidorov, D., and Spiryaev, V., Application of Two Stages Adaptive Neural Network Approach for Short-Term Forecast of Electric Power Systems, Proc. 10 Int. Conf. Environ. Electr. Engineer., Rome, 2011, pp. 1–4.

    Google Scholar 

  15. Manov, N.S., Khokhlov, M.V., Chukreev, Yu.Ya., et al., Metody i modeli issledovaniya nadezhnosti elektroenergeticheskikh sistem (Methods and Models for Reliability Studies of Electric Power Systems), Syktyvkar: Komi Nauchn. Tsentr, Ural. Otd. Ross. Akad. Nauk, 2010.

    Google Scholar 

  16. Kurbatskii, V.G., Sidorov, D.N., Spiryaev, V.A., and Tomin, N.V., On the Neural Network Approach for Forecasting of Nonstationary Teme Series on the Basis of the Hilbert–Huang Transform, Autom. Remote Control, 2011, vol. 72, no. 7, pp. 1405–1414.

    Article  MathSciNet  Google Scholar 

  17. Kalyani, S. and Shanti Swarup, K., Design of Pattern Recognition System for Static Security Assessment and Classification, Patt. Anal. Appl., 2012, vol. 15, pp. 299–311.

    Article  MathSciNet  Google Scholar 

  18. Jothinathan, K. and Ganapathy, S., Transient Security Assessment in Power Systems Using Deep Neural Network, Int. J. Appl. Engin. Res., 2012, vol. 10, no. 15, pp. 787–790.

    Google Scholar 

  19. Diao, R., Sun, K., Vittal, V., et al., Decision Tree-Based Online Voltage Security Assessment Using PMU Measurements, IEEE Trans. Power Syst., 2009, vol. 24, no. 2, pp. 832–839.

    Article  Google Scholar 

  20. Arkhipov, I.L., Ivanov, A.M., Kholkin, D.V., et al., A Multiagent Control System for Voltage and Reactive Power, Proc. 22nd Conf. “Relay Protection and Automation of Power Systems,” Moscow, 2014, pp. 243–252.

    Google Scholar 

  21. Belkacemi, R., Babalola, S., and Zarrabian, A., Experimental Implementation of Multi-Agent System Algorithm to Prevent Cascading Failure after N -1 -1 Contingency in Smart Grid Systems, IEEE Power & Energy Society General Meeting, Denver, 2015, pp. 1–5.

    Google Scholar 

  22. Panasetskii, D.A., Improving the Structure and Algorithms for Failure Protection Control of an Electric Power Station to Prevent Voltage Avalanche and Cascade Outing of Lines, Cand. Sci. Dissertation, Irkutsk: ISEM SB RAS, 2015.

    Google Scholar 

  23. Negenborn, R.R., De Schutter, B., and Hellendoorn, J., Multi-agent Model Predictive Control for Transportation Networks: Serial Versus Parallel Schemes, Eng. Appl. Artific. Intelligence, 2008, vol. 21, pp. 353–366.

    Article  Google Scholar 

  24. Zhukov, A.V. and Sidorov, D.N., A Modification of the Random Forest Algorithm for Classification of Nonstationary Streaming Data, Vest. YuUrGU, Mat. Modelir. Programmir., 2016, vol. 9, no. 4, pp. 86–95.

    Google Scholar 

  25. Zhukov, A.V., Sidorov, D.N., and Foley, A.M., Random Forest Based Approach for Concept Drift Handling, Commun. Comput. Inform. Sci., 2017, vol. 661, pp. 69–77.

    Article  Google Scholar 

  26. Voropai, N.I., Negnevitskii, M., Tomin, N.V., et al., An Intelligent System for Preventing Large Failures in Power Systems, Elektrichestvo, 2014, no. 8, pp. 1–7.

    Google Scholar 

  27. Geurts, P., Ernst, D., and Wehenkel, L., Extremely Randomized Trees, Machine Learning, 2006, vol. 63, no. 1, pp. 3–42.

    Article  MATH  Google Scholar 

  28. Scornet, E., Random Forests and Kernel Methods, IEEE Trans. Inform. Theory, 2016, vol. 62, no. 3, pp. 1485–1500.

    Article  MathSciNet  MATH  Google Scholar 

  29. Kundur, P., Power System Stability and Control, New York: McGraw Hill, 1994.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. I. Voropai.

Additional information

Original Russian Text © N.I. Voropai, N.V. Tomin, D.N. Sidorov, V.G. Kurbatsky, D.A. Panasetsky, A.V. Zhukov, D.N. Efimov, A.B. Osak, 2018, published in Avtomatika i Telemekhanika, 2018, No. 10, pp. 6–25.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Voropai, N.I., Tomin, N.V., Sidorov, D.N. et al. A Suite of Intelligent Tools for Early Detection and Prevention of Blackouts in Power Interconnections. Autom Remote Control 79, 1741–1755 (2018). https://doi.org/10.1134/S0005117918100016

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0005117918100016

Keywords

Navigation