Skip to main content
Log in

Problem of uniform deployment on a line segment for second-order agents

  • Navigation and Control Of Moving Systems
  • Published:
Automation and Remote Control Aims and scope Submit manuscript

Abstract

Consideration was given to a special problem of controlling a formation of mobile agents, that of uniform deployment of several identical agents on a segment of the straight line. For the case of agents obeying the first-order dynamic model, this problem seems to be first formulated in 1997 by I.A. Wagner and A.M. Bruckstein as “row straightening.” In the present paper, the straightening algorithm was generalized to a more interesting case where the agent dynamics obeys second-order differential equations or, stated differently, it is the agent’s acceleration (or the force applied to it) that is the control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Ren, W. and Cao, W., Distributed Coordination of Multi-agent Networks, London: Springer, 2011.

    Book  MATH  Google Scholar 

  2. Mesbahi, M. and Egerstedt, M., Graph Theoretic Methods in Multiagent Networks, Princeton: Princeton Univ. Press, 2010.

    Book  MATH  Google Scholar 

  3. Antonelli, G., Interconnected Dynamic Systems. An Overview on Distributed Control, IEEE Control Syst. Mag., 2013, vol. 33, no. 1, pp. 76–88.

    Article  MathSciNet  Google Scholar 

  4. Agaev, R.P. and Chebotarev, P.Yu., Convergence and Stability in Problem of Coordination of Characteristics, Upravlen. Bol’shimi Sist., 2010, vol. 30, no. 1, pp. 470–505.

    Google Scholar 

  5. Ren, W. and Beard, R., Distributed Consensus in Multi-vehicle Cooperative Control. Theory and Applications, London: Springer, 2008.

    Book  MATH  Google Scholar 

  6. Bullo, F., Cortes, J., and Martinez, S., Distributed Control of Robotics Networks, Princeton: Princeton Univ. Press, 2009.

    Book  MATH  Google Scholar 

  7. Lafferriere, G., Williams, A., Caughman, J., et al., Decentralized Control of Vehicle Formations, Syst. & Control Lett., 2005, vol. 54, no. 9, pp. 899–910.

    Article  MathSciNet  MATH  Google Scholar 

  8. Olfati-Saber, R., Flocking for Multi-agent Dynamic Systems. Algorithms and Theory, IEEE Trans. Autom. Control, 2006, vol. 51, no. 3, pp. 401–420.

    Article  MathSciNet  Google Scholar 

  9. Zavlanos, M.M., Egerstedt, M.B., and Pappas, G.J., Graph-theoretic Connectivity Control of Mobile Robot Networks, Proc. IEEE, 2011, vol. 99, no. 9, pp. 1525–1540.

    Article  Google Scholar 

  10. Reynolds, C.W., Flocks, Herds, and Schools: A Distributed Behavioral Model, Comput. Graphics, 1987, vol. 21, no. 4, pp. 25–34.

    Google Scholar 

  11. Schwager, M., Rus, D., and Slotine, J.J., Unifying Geometric, Probabilistic, and Potential Field Approaches to Multi-robot Deployment, Int. J. Robot. Res., 2011, vol. 30, no. 3, pp. 371–383.

    MATH  Google Scholar 

  12. Ny, J.L., Ribeiro, A., and Pappas, G.J., Adaptive Communication-constrained Deployment of Unmanned Vehicle systems, IEEE J. Select. Areas Commun., 2012, vol. 30, no. 5, pp. 923–934.

    Article  Google Scholar 

  13. Li, W. and Spong, M.W., Unified Cooperative Control of Multiple Agents on a Sphere for Different Spherical Patterns, IEEE Trans. Autom. Control, 2014, vol. 59, no. 5, pp. 1283–1289.

    Article  MathSciNet  Google Scholar 

  14. Flocchini, P., Prencipe, G., and Santoro, N., Self-deployment of Mobile Sensors on a Ring, Theor. Comput. Sci., 2008, vol. 402, no. 1, pp. 67–80.

    Article  MathSciNet  MATH  Google Scholar 

  15. Elor, Y. and Bruckstein, A.M., Uniform Multi-agent Deployment on a Ring, Theor. Comput. Sci., 2011, vol. 412, no. 8–10, pp. 783–795.

    Article  MathSciNet  MATH  Google Scholar 

  16. Cortes, J., Coverage Optimization and Spatial Load Balancing by Robotic Sensor Networks, IEEE Trans. Autom. Control, 2010, vol. 55, no. 3, pp. 749–754.

    Article  MathSciNet  Google Scholar 

  17. Pavone, M., Arsie, A., Frazzoli, E., et al., Distributed Algorithms for Environment Partitioning in Mobile Robotic Networks, IEEE Trans. Autom. Control, 2011, vol. 56, no. 8, pp. 1834–1848.

    Article  MathSciNet  Google Scholar 

  18. Wagner, I.A. and Bruckstein, A.M., Row Straightening via Local Interactions, Circuits Syst. Signal Process., 1997, vol. 16, no. 2, pp. 287–305.

    Article  MathSciNet  MATH  Google Scholar 

  19. Elmachtoub, A.N. and van Loan, C.F., From Random Polygon to Ellipse. An Eigenanalysis, SIAM Rev., 2010, vol. 52, no. 1, pp. 151–170.

    Article  MathSciNet  MATH  Google Scholar 

  20. Shcherbakov, P.S., Formation Control. The Van Loan Scheme and Other Algorithms, Autom. Remote Control, 2011, vol. 72, no. 10, pp. 681–696.

    Article  MathSciNet  MATH  Google Scholar 

  21. Parsegov, S., Polyakov, A., and Shcherbakov, P., Nonlinear Fixed-time Control Protocol for Uniform Allocation of Agents on a Segment, Proc. IEEE Conf. Decision Control, 2012, pp. 7732–7737.

    Google Scholar 

  22. Parsegov, S.E., Polyakov, A.E., and Shcherbakov, P.S., Nonlinear Fixed-time Control Protocol for Uniform Allocation of Agents on a Segment, Dokl. Math., 2013, vol. 87, no. 1, pp. 133–136.

    Article  MathSciNet  MATH  Google Scholar 

  23. Fradkov, A.L. and Grigor’ev, G.K., Decentralized Adaptive Control of Synchronization of Dynamic System Networks at Bounded Disturbances, Autom. Remote Control, 2013, vol. 74, no. 5, pp. 829–844.

    Article  MathSciNet  MATH  Google Scholar 

  24. Amelina, N.O. and Fradkov, A.L., Approximate Consensus in the Dynamic Stochastic Network with Incomplete Information and Measurement Delays, Autom. Remote Control, 2012, vol. 73, no. 11, pp. 1765–1783.

    Article  MathSciNet  MATH  Google Scholar 

  25. Proskurnikov, A.V., Frequency-domain Criteria for Consensus in Multiagent Systems with Nonlinear Sector-shaped Couplings, Autom. Remote Control, 2014, vol. 75, no. 11, pp. 1982–1995.

    Article  MathSciNet  MATH  Google Scholar 

  26. Proskurnikov, A.V., Nonlinear Consensus Algorithms with Uncertain Couplings, Asian J. Control, 2014, vol. 16, no. 5, pp. 1277–1288.

    Article  MathSciNet  MATH  Google Scholar 

  27. Proskurnikov, A.V., Consensus in Nonlinear Stationary Networks with Identical Agents, Autom. Remote Control, 2015, vol. 76, no. 9, pp. 1551–1565.

    Article  MathSciNet  MATH  Google Scholar 

  28. Selivanov, A., Fradkov, A., and Fridman, E., Passification-based Decentralized Adaptive Synchronization of Dynamical Networks with Time-varying Delays, J. Franklin Inst., 2015, vol. 352, no. 1, pp. 52–72.

  29. Kvinto, Y.I. and Parsegov, S.E., Equidistant Arrangement of Agents on Line. Analysis of the Algorithm and its Generalization, Autom. Remote Control, 2012, vol. 73, no. 11, pp. 1784–1793.

    Article  MathSciNet  MATH  Google Scholar 

  30. Ramirez, J.L., Pavone, M., Frazzoli, E., et al., Distributed Control of Spacecraft Formations via Cyclic Pursuit. Theory and Experiments, AIAA J. Guidance, Control, Dynamics, 2010, vol. 33, no. 5, pp. 1655–1669.

    Article  Google Scholar 

  31. Zheng, Y. and Wang, L., Consensus of Heterogeneous Multi-agent Systems without Velocity Measurements, Int. J. Control, 2012, vol. 85, no. 7, pp. 906–914.

    Article  MathSciNet  MATH  Google Scholar 

  32. Voevodin, V.V. and Kuznetsov, Yu.A., Matritsy i vychisleniya (Matrices and Computations), Moscow: Nauka, 1984.

    MATH  Google Scholar 

  33. Hara, S., Hayakawa, T., and Sugata, H., Stability Analysis of Linear Systems with Generalized Frequency Variables and Its Applications to Formation Control, in Proc. IEEE Conf. Decision Control, 2007, pp. 1459–1466.

    Google Scholar 

  34. Polyak, B.T. and Tsypkin, Y.Z., Stability and Robust Stability of Uniform Systems, Autom. Remote Control, 1996, vol. 57, no. 11, pp. 1606–1617.

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Proskurnikov.

Additional information

Original Russian Text © A.V. Proskurnikov, S.E. Parsegov, 2016, published in Avtomatika i Telemekhanika, 2016, No. 7, pp. 152–165.

This paper was recommended for publication by P.S. Shcherbakov, a member of the Editorial Board

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Proskurnikov, A.V., Parsegov, S.E. Problem of uniform deployment on a line segment for second-order agents. Autom Remote Control 77, 1248–1258 (2016). https://doi.org/10.1134/S0005117916070110

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0005117916070110

Navigation