Skip to main content
Log in

Inducing cell wall-bound phenolic compounds by elicitors in eggplant (Solanum melongena)

  • Published:
Applied Biochemistry and Microbiology Aims and scope Submit manuscript

Abstract

We investigated the effect of elicitation on cell wall strengthening in eggplant roots caused by 6 elicitors viz., chitosan (CH), salicylic acid (SA), methyl jasmonate, methyl salicylate and vitamins B2 and B12. Analysis of phenolic metabolites from eggplant roots by HPLC revealed presence of 6 major cell wall-bound phenolic compounds. They were 4-hydroxybenzoic acid (4-HBA), vanillic acid (VA), 4-hydroxybenzaldehyde (4-HBAld), vanillin (VAN), 4-coumaric acid (4-CA) and ferulic acid (FA). In eggplant roots, the concentrations of FA, VA and 4-HBA were 188.71, 113.64 and 109.42 μg/g DW, respectively, and they were higher than those of 4-HBAld, VAN and 4-CA. When elicited roots were analyzed by HPLC, quantitative differences could be clearly discerned in the amount of the phenolic compounds. After 48 h post-elicitation (hpe) in the presence of CH, the increase in 4-HBA, 4-CA and FA contents in cell wall was 2.6-, 2.8- and 3.0-fold, respectively, compared with control. After 72 hpe, in the presence of SA, the increase in 4-HBA, 4-CA and FA levels was 3.5-, 2.9- and 3.8-fold, respectively, compared with the control. As the elicitors have specific receptors in plants, it may be possible to utilize CH and SA for inducing resistance against important diseases in eggplant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Thordal–Christensen, H., Curr. Opin. Plant Biol., 2003, vol. 6, no. 4, pp. 351–357.

    Article  PubMed  Google Scholar 

  2. Chisholm, S., Coaker, G., Day, B., and Staskawicz, B., Cell, 2006, vol. 124, no. 4, pp. 803–814.

    Article  CAS  PubMed  Google Scholar 

  3. Niemann, G.H., van der Kerk, A., Niessen, M.A., and Versluis, K., Physiol. Mol. Plant Pathol., 1991, vol. 38, no. 6, pp. 417–432.

    Article  CAS  Google Scholar 

  4. Montesano, M., Brader, G., and Palva, E.T., Mol. Plant Pathol., 2003, vol. 4, no. 1, pp. 73–79.

    Article  CAS  PubMed  Google Scholar 

  5. Dardick, C. and Ronald, P., PLoS Pathog., 2006, vol. 2, no. 1, p. e2.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Dixon, R.A. and Lamb, C.J., Annu. Rev. Plant Physiol. Plant Mol. Biol., 1990, vol. 41, pp. 339–367.

    Article  CAS  Google Scholar 

  7. Zhao, J., Davis, L.C., and Verpoorte, R., Biotechnol. Adv., 2005, vol. 23, no. 4, pp. 283–333.

    Article  CAS  PubMed  Google Scholar 

  8. Greenberg, J. and Yao, N., Cell Microbiol., 2004, vol. 6, no. 3, pp. 201–211.

    Article  CAS  PubMed  Google Scholar 

  9. Strange, R.N. and Scott, P.R., Annu. Rev. Phytopathol., 2005, vol. 43, pp. 83–116.

    Article  CAS  PubMed  Google Scholar 

  10. Mandal, S., Mitra, A., and Mallick, N., Plant Physiol. Biochem., 2009, vol. 47, no. 7, pp. 642–649.

    Article  CAS  PubMed  Google Scholar 

  11. Parr, A.J., Waldron, K.W., Ng, A., and Parker, M.L., J. Sc. Food Agric., 1996, vol. 71, no. 4, pp. 501–507.

    Article  CAS  Google Scholar 

  12. Villegus, M. and Brodelius, P.E., Physiol. Plant., 1990, vol. 78, no. 3, pp. 414–420.

    Article  Google Scholar 

  13. Mandal, S. and Mitra, A., Physiol. Mol. Plant Pathol., 2007, vol. 71, no. 4–6, pp. 201–209.

    Google Scholar 

  14. Mandal, S. and Mitra, A., Biotechnol. Lett., 2008, vol. 30, no. 7, pp. 1253–1258.

    Article  CAS  PubMed  Google Scholar 

  15. El Modafar, C., Tantaoui, A., and El Boustani, E., J. Phytopathol., 2000, vol. 148, nos. 7–8, pp. 405–411.

    Article  Google Scholar 

  16. McKeehen, J.D., Busch, R.H., and Fulcher, R.G., J. Agric. Food Chem., 1999, vol. 47, no. 4, pp. 1476–1482.

    Article  CAS  PubMed  Google Scholar 

  17. Lewis, N.G. and Yamamoto, E., Ann. Rev. Plant Physiol. Plant Mol. Biol., 1990, vol., 41, pp. 455–496.

    Article  CAS  Google Scholar 

  18. Vance, C.P., Kirk, T.K., and Sherwood, R.T., Ann. Rev. Phytopathol., 1980, vol. 18, pp. 259–288.

    Article  CAS  Google Scholar 

  19. Matern, U. and Kneusel, R.E., Phytoparasitica, 1988, vol. 16, no. 2, pp. 153–170.

    Article  CAS  Google Scholar 

  20. Fry, S.C., Annu. Rev. Plant Physiol., 1986, vol. 37, pp. 165–786.

    Article  CAS  Google Scholar 

  21. Boller, T., Annu. Rev. Plant Physiol. Plant Mol. Biol., 1995, vol. 46, pp. 189–214.

    Article  CAS  Google Scholar 

  22. De Ascensao, A.R.C.F. and Dubery, I.A. Phytochemistry, 2003, vol. 63, no. 6, pp. 679–686.

    Article  PubMed  Google Scholar 

  23. Campbell, M.M. and Ellis, B.E., Phytochemistry, 1992, vol. 31, no. 3, pp. 737–742.

    Article  CAS  Google Scholar 

  24. Mandal, S., Afr. J. Biotechnol., 2010, vol. 9, no. 47, pp. 8038–8047.

    Article  CAS  Google Scholar 

  25. Iriti, M. and Faoro, F., Plant Sig. Behav., 2009, vol. 4, no. 1, pp. 66–68.

    Article  CAS  Google Scholar 

  26. Taheri, P. and Tarighi, S., J. Plant Physiol., 2011, vol. 168, no. 3, pp. 1114–1122.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Mandal.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mandal, S., Gupta, C.K. Inducing cell wall-bound phenolic compounds by elicitors in eggplant (Solanum melongena). Appl Biochem Microbiol 52, 650–656 (2016). https://doi.org/10.1134/S0003683816060120

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0003683816060120

Keywords

Navigation