Skip to main content
Log in

Differential effects of D-amino acids on the fusion forms of a cysteine proteinase/cystatin pair

  • Published:
Applied Biochemistry and Microbiology Aims and scope Submit manuscript

Abstract

The interactions of 2 different fusion constructs of a plant cysteine proteinase (CP)/cysteine proteinase inhibitor (CPI) pair designated as R1: H2N-maltose-binding protein-CPI-CP-COOH and R2: H2N-maltose-binding protein-CP-CPI-COOH with 4 different D-amino acids including D-Ala, D-Ser, D-Asp and D-Phe were analyzed using experimental methods and computational tools. The results showed that the relative activity of CP is increased in purified R2 product and test D-amino acids tend to interact with CP/CPI pair. In contrast, the functionality of R1 product was not influenced by test D-amino acids. Determination of the effects of D-enantiomers of amino acids on the fusion forms of 2 functionally related proteins such as CP and CPI is the first research in this area. The results related to the binding abilities and the functional properties of 2 differentially organized forms of CP/CPI pair are predicted to be used as biotechnological clues to make switchable expression systems of 2 functionally related proteins in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Wisniewski, K. and Zagdanska, B., J. Exp. Bot., 2001, vol. 52, no. 360, pp. 1455–1463.

    Article  CAS  PubMed  Google Scholar 

  2. Grudkowska, M.M. and Zagdanska, B., Acta Biochim. Polon., 2004, vol. 51, no. 3, pp. 609–624.

    CAS  PubMed  Google Scholar 

  3. Ye, Z.H. and Varner, J.E., Plant Mol. Biol., 1996, vol. 30, no. 6, pp. 1233–1246.

    Article  CAS  PubMed  Google Scholar 

  4. Zhao, C., Johnson, B.J., Kositsup, B., and Beers, E.P., Plant Physiol., 2000, vol. 123, no. 3, pp. 1185–1196.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Kruger, J., Thomas, C.M., Golstein, C., Dixon, M.S., Smoker, M., Tang, S., Mulder, L., and Jones, J.D., Science, 2002, vol. 296, no. 5568, pp. 744–747.

    Article  PubMed  Google Scholar 

  6. Chen, H.J., Huang, D.J., Hou, W.C., Liu, J.S., and Lin, Y.H., J. Plant Physiol., 2006, vol. 163, no. 8, pp. 863–876.

    Article  CAS  PubMed  Google Scholar 

  7. Aberlenc-Bertossi, F., Chabrillange, N., Duval, Y., and Tregear, J., Tree Physiol., 2008, vol. 28, no. 8, pp. 1157–1167.

    Article  CAS  PubMed  Google Scholar 

  8. Fan, J., Yang, Y.W., Gao, X., Deng, W., Falara, V., Kanellis, A.K., and Li, Z.G., Plant Cell Tiss. Organ. Cult., 2009, vol. 98, no. 3, pp. 281–289.

    Article  CAS  Google Scholar 

  9. Rzychon, M., Chmiel, D., and Stec-Niemczyk, J., Acta Biochim. Polon., 2004, vol. 51, no. 4, pp. 861–873.

    CAS  PubMed  Google Scholar 

  10. Solomon, M., Belenghi, B., Delledonne, M., Menachem, E., and Levine, A., Plant Cell, 1999, vol. 11, no. 3, pp. 431–443.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Martinez, M. and Diaz, I., BMC Evol. Biol., 2008, vol. 8, pp. 198–209.

    Article  PubMed Central  PubMed  Google Scholar 

  12. Martínez, M., Cambra, I., González-Melendi, P., Santamaría, M.E., and Diaz, I., Physiol. Plant., 2012, vol. 145, no. 1, pp. 85–94.

    Article  PubMed  Google Scholar 

  13. Chatterjee, S., Qiang Gu, Z., Dunn, D., Tao, M., Josef, K., Tripathy, R., et al., J. Med. Chem., 1998, vol. 41, no. 15, pp. 2663–2666.

    Article  CAS  PubMed  Google Scholar 

  14. Dondkor, I.O., Curr. Med. Chem., 2000, vol. 7, no. 12, pp. 1171–1188.

    Article  Google Scholar 

  15. Annedi, S.C., Biabani, F., Poduch, E., Mannargudi, B.M., Majumder, K., Wei, L., et al., Bioorg. Med. Chem., 2006, vol. 14, no. 1, pp. 214–236.

    Article  CAS  PubMed  Google Scholar 

  16. Nakatani, S., Hidaka, K., Ami, E., Nakahara, K., Sato, A., Nguyen, J.T., et al., J. Med. Chem., 2008, vol. 51, no. 10, pp. 2992–3004.

    Article  CAS  PubMed  Google Scholar 

  17. Poreba, M., Mihelic, M., Krai, P., Rajkovic, J., Krezel, A., Pawelezak, M., et al., Amino Acids, 2014, vol. 46, no. 4, pp. 931–943.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Dundek, P., Holik, L., Vranova, V., Rejsek, K., and Formanek, P., Acta Univ. Agric. Silvic. Mendel. Brun., 2011, vol. 59, no. 3, pp. 29–34.

    Article  CAS  Google Scholar 

  19. Gholizadeh, A., Cytol. Genet., 2015, vol. 3 (in press).

  20. Shindo, T., Misas-Villamil, J.C., Horger, A.C., Song, J., and Van der Hoorn, R.A.L., PLoS ONE, 2012, vol. 7, no. 1, p. e29317.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Laemmli, U.K., Nature, 1970, vol. 227, no. 5259, pp. 680–685.

    Article  CAS  PubMed  Google Scholar 

  22. Misaka, T., Kuroda, M., Iwabuchi, K., Abe, K., and Arai, S., Eur. J. Biochem., 1996, vol. 240, no. 3, pp. 609–612.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Gholizadeh.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gholizadeh, A. Differential effects of D-amino acids on the fusion forms of a cysteine proteinase/cystatin pair. Appl Biochem Microbiol 51, 299–305 (2015). https://doi.org/10.1134/S0003683815030072

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0003683815030072

Keywords

Navigation