Skip to main content
Log in

Inhibitory effect of components from Streptomyces species on α-glucosidase and α-amilase of different origin

  • Published:
Applied Biochemistry and Microbiology Aims and scope Submit manuscript

Abstract

The search for the effective and safe α-glucosidase and α-amylase inhibitors from Actinomycetaceae being antidiabetic agents is actual problem. Twenty one Streptomyces spp. of soil samples collected from different places of China were screened for the ability to produce this kind of inhibitory activities. Fermentation broth of isolated strains had absorbance between 350–190 nm. The Streptomyces strains PW003, ZG636, and ZG731 were characterized by special absorption at 280, 275, and 400 nm, respectively. Ten of the collected actinomycete strains had the ability to inhibit α-glucosidase or/and α-amylase and the fermentation broth of the same strain had inhibitory activity varied greatly depending on the enzyme source. In the process to screen the leading compounds used as antidiabetic agents, human α-glucosidase and α-amylase were revealed as the best used in trail compared with the same enzymes from other sources. Active α-glucosidase inhibitor was isolated from Streptomyces strain PW638 fermentation broth and identified as acarviostatin I03 by MS and NMR spectrometry. Its IC50 value was 1.25 and 12.23 μg/ml against human intestinal N-terminal maltase-glucoamylase and human pancreatic α-amylase, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Coniff, R. and Kron, A., Clin. Ther., 1997, vol. 19, no. 1, pp.16–26.

    Article  PubMed  CAS  Google Scholar 

  2. Eduardo, B.M., Adriane, S.G., and Ivone, C., Tetrahedron, 2006, vol. 62, no. 44, pp. 10277–10302.

    Article  Google Scholar 

  3. Taifo, M., Nat. Prod. Rep., 2003, vol. 20, no. 1, pp. 137–166.

    Article  Google Scholar 

  4. Waksman, S.A. and Henrici AT., J. Bacteriol., 1943, vol. 46, no.4, pp. 337–341.

    PubMed  CAS  Google Scholar 

  5. Kim, S.B., Lonsdale, J., and Seong, C.N., Antonie van Leeuwenhoek, 2003, vol. 83, no. 4, pp. 107–116.

    Article  PubMed  CAS  Google Scholar 

  6. Okami, Y. and Hotta, K., in Actinomycetes in Biotechnology, Goodfellow, M., Williams, S.T., and Mordarski, M., Eds., London: Academic Press, 1988, pp. 33–67.

    Chapter  Google Scholar 

  7. Myers, A.M., Morel, M.K., James, M.G., and Ball, S.G., Plant Physiol., 2000, vol. 122, pp. 989–997.

    Article  PubMed  CAS  Google Scholar 

  8. Flanagan, P.R. and Forstner, G.G., Biochem. J., 1978, vol. 173, no. 2, pp. 553–563.

    PubMed  CAS  Google Scholar 

  9. Auricchio, S., Semenza, G., and Rubino, A., Biochim. Biophys. Acta, 1965, vol. 96, pp. 498–507.

    Article  PubMed  CAS  Google Scholar 

  10. Huang, Y.N., Zhao, Y.L., Gao, X.L., Zhao, Z.F., Jing, Z., Zeng, W.C., and Yang, R., J. Ethnopharmacol., 2010, vol. 58, pp. 135–144.

    Google Scholar 

  11. Hillebrand, I., Boehme, K., Frank, G., Fink, H., and Berchtold, P., Res. Exp. Med. (Berlin), 1979, vol. 175, no. 1, pp. 81–86.

    Article  CAS  Google Scholar 

  12. Matsumoto, K., Yano, M., Miyake, S., Ueki, Y., Yamaguchi, Y., Akazawa, S., and Tominaga, Y., Diabetes Care, 1998, vol. 21, no. 2, pp. 256–260.

    Article  PubMed  CAS  Google Scholar 

  13. Gurusiddaiah, S. and Graham, S.O., Antimicrob. Agents Chemother., 1980, vol. 17, no. 6, pp. 980–987.

    Article  PubMed  CAS  Google Scholar 

  14. Werner, G., Hagenmaier, H., Drautz, H., Baumgartner, A., and Zahner, H., J. Antibiot. (Tokyo), 1984, vol. 37, pp. 110–117.

    Article  CAS  Google Scholar 

  15. Henkel, T., Ciesiolka, T., Rohr, J., and Zeeck, A., J. Antibiot. (Tokyo), 1989, vol. 42, pp. 299–311.

    Article  CAS  Google Scholar 

  16. Kunihiro, S. and Kaneda, M., J. Antibiot. (Tokyo), 2003, vol. 56, pp. 3330–3333.

    Google Scholar 

  17. Kuster, E. and Williams, S., Nature, 1964, vol. 202, pp.928–932.

    Article  Google Scholar 

  18. Wipat, A., Wellington, E., and Saunders, V., Appl. Environ. Microbiol., 1991, vol. 57, no. 11, pp. 23–30.

    Google Scholar 

  19. Lechevalier, M.P. and Lechevalier, H.A., Int. J. Syst. Bacteriol., 1970, vol. 20, pp. 35–43.

    Article  Google Scholar 

  20. Taddei, A., Rodriquez, M., Marquezvilchez, E., and Castelli, C., Microbiol. Res., 2006, vol. 161, no. 3, pp. 222–231.

    Article  PubMed  CAS  Google Scholar 

  21. Bieble, H. and Sproer, C., Syst. Appl. Microbiol., 2002, vol. 25, no. 4, pp. 491–497.

    Article  Google Scholar 

  22. Geng, P., Qiu, F., Zhu, Y.Y., and Bai, G., Carbohydr. Res., 2008, vol. 343, no. 5, pp. 882–892.

    Article  PubMed  CAS  Google Scholar 

  23. Shirling, E.B. and Gottlieb, D., Int. J. Syst. Bacteriol., 1966, vol. 16, no. 3, pp.313–340.

    Article  Google Scholar 

  24. Myles, D.C., Curr. Opin. Biotech., 2003, vol. 14, no. 6, pp. 627–633.

    Article  PubMed  CAS  Google Scholar 

  25. Honda, S., Akao, E., Suzuki, S., Okuda, M., and Kakehi, K., J. Anal. Biochem., 1989, vol. 180, no. 2, pp. 351–357.

    Article  CAS  Google Scholar 

  26. Lee, D.S., J. Biosci. Bioeng., 2000, vol. 89, no. 2, pp.271–273.

    Article  PubMed  CAS  Google Scholar 

  27. Geng, P. and Bai, G., Carbohydr. Res., 2008, vol. 343, no. 3, pp. 470–476.

    Article  PubMed  CAS  Google Scholar 

  28. Mahmud, T., Nat. Prod. Rep., 2003, vol. 20, no. 1, pp. 137–166.

    Article  PubMed  CAS  Google Scholar 

  29. Davies, J.E., J. Antibiot. (Tokyo), 2007, vol. 38, no. 8, pp.529–532.

    Google Scholar 

  30. Yoichi, N., Takashi, M., Shigeki, M., Rob, W.M., Soestb, V., and Nobuhiro, F., Tetrahedron, 2000, vol.56, no.46, 8977–8987.

    Article  Google Scholar 

  31. Choudhary, D., Jansson, I., Sarfarazi, M., and Schenkman, J.B., Pharmacogenet. Genomics, 2008, vol. 18, no. 8, pp. 665–676.

    Article  PubMed  CAS  Google Scholar 

  32. Kim, K.Y., Nama, K.A.., Kurihara, H.B., and Kim, S.M., Phytochemistry, 2008, vol. 69, no. 16, pp. 2820–2825.

    Article  PubMed  CAS  Google Scholar 

  33. Lee, S.S., Lin, H.C., and Chen, C.K., Phytochemistry, 2008, vol. 69, no. 12, pp.2347–2353.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Bai.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meng, P., Xie, C., Geng, P. et al. Inhibitory effect of components from Streptomyces species on α-glucosidase and α-amilase of different origin. Appl Biochem Microbiol 49, 160–168 (2013). https://doi.org/10.1134/S0003683813020099

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0003683813020099

Keywords

Navigation