Skip to main content
Log in

Nonhydrostatic tidal dynamics in the area of a seamount

  • Marine Physics
  • Published:
Oceanology Aims and scope

Abstract

The nonhydrostatic boundary problem for an arbitrary three-dimensional domain with a seamount is considered. The problem is integrated into curvilinear boundary-fitted coordinates on a nonuniform grid. In order to identify nonhydrostatic effects the grid is condensed on the slopes of the seamount preserving a coarse resolution in the rest of the domain, where the problem is solved in the hydrostatic approximation. Calculation results for the nonhydrostatic tidal dynamics and hydrology of the Strait of Messina in the area of a seamount are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. A. A. Androsov and N. E. Voltzinger, The Straits of the World Ocean: General Approach to the Modeling (Nauka, St. Petersburg, 2005) [in Russian].

    Google Scholar 

  2. A. A. Androsov, N. E. Voltzinger, and D. A. Romanenkov, “Simulation of three-dimensional baroclinic tidal dynamics in the Strait of Messina,” Izv. Atmos. Ocean. Phys. 38 (1), 105–118 (2002).

    Google Scholar 

  3. N. E. Voltzinger and A. A. Androsov, “Nonhydrostatic barotropic-baroclinic interaction in strait with mountain relief,” Fundam. Prikl. Gidrofiz. 6 (3), 63–77 (2013).

    Google Scholar 

  4. V. B. Zalesnyi, R. Tamsalu, and T. Kullas, “Nonhydrostatic model of marine circulation,” Oceanology (Engl. Transl.) 44 (4), 461–471 (2004).

    Google Scholar 

  5. A. S. Safrai, I. V. Tkachenko, S. M. Gordeeva, and M. Yu. Belevich, “Modeling of seasonal variability of internal tidal waves in the Barents Sea,” Navig. Gidrogr., No. 22, 118–125 (2006).

    Google Scholar 

  6. A. A. Androssov, B. A. Kagan, D. A. Romanenkov, and N. E. Voltzinger, “Numerical modelling of barotropic tidal dynamics in the strait of Messina,” Adv. Water Resour. 25, 401–415 (2002).

    Article  Google Scholar 

  7. A. Androsov, A. Rubino, R. Romeiser, and D. V. Sein, “Open-ocean convection in the Greenland Sea: preconditioning through a mesoscale chimney and detectability in SAR imagery studied with a hierarchy of nested numerical models,” Meteorol. Z. 14 (14), 693–702 (2005).

    Article  Google Scholar 

  8. F. Bignami and E. Salusti, “Tidal currents and transient phenomena in the Strait of Messina: a review,” in The Physical Oceanography of Sea Straits, Ed. by L. J. Pratt (Kluwer, Amsterdam, 1990), pp. 95–124.

    Chapter  Google Scholar 

  9. R. E. Britter and P. F. Linden, “The motion of the front of a gravity current travelling down an incline,” J. Fluid Mech. 99 (3), 531–543 (1980).

    Article  Google Scholar 

  10. A. M. Davis, J. Xing, and J. Berntsen, “Non-hydrostatic and non-linear contributions to the internal wave energy flux in sill regions,” Ocean Dyn. 59 (6), 881–897 (2009).

    Article  Google Scholar 

  11. A. Mahadevan, J. Oliger, and R. Street, “A nonhydrostatic mesoscale ocean model parts 1, 2,” J. Phys. Oceanogr. 26 (9), 1868–1900 (1996).

    Article  Google Scholar 

  12. J. Marshall, C. Hill, L. Perelman, and A. Adcroft, “Hydrostatic, quasi-hydrostatic, and nonhydrostatic ocean modeling,” J. Geophys. Res., C: Oceans Atmos. 102 (3), 5733–5752 (1997).

    Article  Google Scholar 

  13. J. Marshall, H. Jones, and C. Hill, “Efficient ocean modeling using non-hydrostatic algorithms,” Mar. Syst. 18, 115–134 (1998).

    Article  Google Scholar 

  14. G. I. Shapiro and A. E. Hill, “Dynamics of dense water cascades at the shelf edge,” J. Phys. Oceanogr. 27 (1), 2381–2394 (1997).

    Article  Google Scholar 

  15. Z. Zhang, O. B. Fringer, and S. R. Ramp, “Threedimensional, nonhydrostatic numerical simulation of nonlinear internal wave generation and propagation in the South China Sea,” J. Geophys. Res., C: Oceans Atmos. 116 (05022), 1–26 (2011).

    Google Scholar 

  16. D. Z. Zhu and G. A. Lawrence, “Non-hydrostatic effects in layered shallow water flows,” J. Fluid Mech. 355 (25), 1–16 (1998).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. E. Voltzinger.

Additional information

Original Russian Text © N.E. Voltzinger, A.A. Androsov, 2016, published in Okeanologiya, 2016, Vol. 56, No. 4, pp. 537–546.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Voltzinger, N.E., Androsov, A.A. Nonhydrostatic tidal dynamics in the area of a seamount. Oceanology 56, 491–500 (2016). https://doi.org/10.1134/S0001437016030243

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001437016030243

Navigation