Skip to main content
Log in

Regime shift in the ecosystem of the eastern Gulf of Finland caused by the invasion of the polychaete Marenzelleria arctia

  • Marine Biology
  • Published:
Oceanology Aims and scope

Abstract

The changes in the concentrations of the mineral nitrogen (nitrates and nitrites) and phosphorus and in the state of the planktic communities in the eastern Gulf of Finland following a large-scale invasion of the polychaete Marenzelleria arctia were analyzed. The bioirrigation and bioturbation of the bottom deposits by polychaetes resulted in a dramatic increase in the nitrogen/phosphorus ratio in the waters of the gulf, thus leading to cascade changes in the plankton. As a result of the decrease in the abundance of colonial nitrogen-fixing cyanobacteria, which cause “blooming” in surface waters, the total biomass of the phytoplankton and chlorophyll a concentration decreased. Because of the disappearance of large colonies of cyanobacteria and the surge of small algae, the food supply for the zooplankton improved and its biomass increased. According to our calculations, the amount of phosphorus deposited in the bottom sediments as a result of the polychaete activity markedly exceeded the external phosphorus load on the Gulf of Finland from the Russian coast. We conclude that the invasion of Marenzelleria arctia resulted in the cardinal reconstruction of the entire ecosystem of the eastern Gulf of Finland.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. V. Aleksandrov, Primary Production of Plankton in the Baltic Lagoons (Vislinskiy and Kurshskiy Gulfs) (Atlant. Nauchno-Issled. Inst., Kaliningrad, 2010) [in Russian].

    Google Scholar 

  2. V. B. Brekhovskikh, V. D. Kazmiruk, and G. N. Vishnevskaya, Importance of Biota for Mass Transfer in Water Objects (Nauka, Moscow, 2008) [in Russian].

    Google Scholar 

  3. N. G. Bulgakov and A. P. Levich, “Biogenic elements in environment and phytoplankton: a ratio of nitrogen and phosphorus as independent regulatory factor,” Usp. Sovrem. Biol. 15(1), 13–23 (1995).

    Google Scholar 

  4. T. R. Eremina and L. N. Karlin, “Modern features of hydrochemical conditions in Eastern Gulf of Finland,” in Ecosystem of Neva Estuary: Biological Diversity and Environmental Problems (KMK, Moscow, 2008), pp. 24–38.

    Google Scholar 

  5. T. R. Eremina, A. A. Maximov, and E. V. Voloshchuk, “The influence of the climate’s variability on the deep-water oxygen conditions in the east of the Gulf of Finland,” Oceanology 52(6), 771–779 (2012).

    Article  Google Scholar 

  6. A. V. Isaev, Candidate’s Dissertation in Geography (Ross. Gos. Gidrometeorol. Univ., St. Petersburg, 2010).

  7. S. A. Kondratyev, “Estimation of the nutrient load on the Gulf of Finland from the Russian part of its catchment,” Water Res. 38(1), 63–71 (2011).

    Article  Google Scholar 

  8. E. K. Lange, “Analysis of structural indices of late summer phytoplankton of Neva Bay over last 90 years,” Sb. Nauchn. Tr.-Gos. Nauchno-Issled. Inst. Ozern. Rechn. Rybn. Khoz. 1(331), 146–231 (2006).

    Google Scholar 

  9. A. P. Levich, “Environmental approaches to regulation of flowering types of eutrophic reservoirs,” Dokl. Akad. Nauk 341(1), 130–133 (1995).

    Google Scholar 

  10. A. P. Levich, V. N. Maksimov, and N. G. Bulgakov, Theoretical and Experimental Ecology of Phytoplankton: Regulation of Structure and Functions of Communities (NIL, Moscow, 1997) [in Russian].

    Google Scholar 

  11. A. A. Maximov, “Macrozoobenthos of eastern part of the Gulf of Finland,” in Problems of Study and Mathematical Modeling of Ecosystem of the Baltic Sea, No. 5: Ecosystem Models: Assessment of Current Conditions of the Gulf of Finland, Vol. 2: Hydrometeorological, Hydrochemical, Hydrobiological, Geological Conditions, and Dynamics of the Gulf of Finland (Gidrometeoizdat, St. Petersburg, 1997), pp. 405–416.

    Google Scholar 

  12. A. A. Maximov, Large-scale invasion of Marenzelleria spp. (Polychaeta; Spionidae) in the eastern Gulf of Finland, Baltic Sea,” Russ. J. Biol. Invasions 2(1), 11–19 (2011).

    Article  Google Scholar 

  13. O. B. Maximova, “Influence of higher water turbidity on structure-functional characteristics of phytoplankton,” Sb. Nauchn. Tr.-Gos. Nauchno-Issled. Inst. Ozern. Rechn. Rybn. Khoz. 1(331), 86–121 (2006).

    Google Scholar 

  14. Manual on Chemical Analysis of Marine Waters (Gidrometeoizdat, St. Petersburg, 1993) [in Russian].

  15. O. P. Savchuk, “Study eutrophication of the Baltic Sea,” Tr. Gos. Okeanogr. Inst. 209, 272–285 (2005).

    Google Scholar 

  16. Ecosystem of Neva River Estuary: Biological Diversity and Ecological Problems, Ed. by A. F. Alimov and S. M. Golubkov (KMK, Moscow, 2008) [in Russian].

    Google Scholar 

  17. J. Berglund, U. Müren, U. Båmstedt, and A. Andersson, “Efficiency of a phytoplankton-based and a bacteria-based food web in a pelagic marine system,” Limnol. Oceanogr. 52(1), 121–131 (2007).

    Article  Google Scholar 

  18. S. K. Berke, “Functional groups of ecosystem engineers: a proposed classification with comments on current issues,” Integr. Comp. Biol. 50(2), 147–157 (2010).

    Article  Google Scholar 

  19. D. L. Breitburg, B. C. Crump, J. O. Dabiri, C. L. Gallegos, “Ecosystem engineers in the pelagic realm: alteration of habitat by species ranging from microbes to jellyfish,” Integr. Comp. Biol. 50(2), 188–200 (2010).

    Article  Google Scholar 

  20. D. J. Conley, S. Björck, E. Bonsdorff, et al., “Hypoxia-related processes in the Baltic Sea,” Environ. Sci. Technol. (Dordrecht, Neth.) 43(10), 3412–3420 (2009).

    Article  Google Scholar 

  21. J. W. Dippner, I. Vuorinen, D. Daunys, et al., “Climate-related marine ecosystem change,” in Assessment of Climate Change for the Baltic Sea Basin (Springer-Verlag, Berlin Heidelberg, 2008), pp. 309–376.

    Chapter  Google Scholar 

  22. HELCOM 1988, “Guidelines for the Baltic Monitoring Programme for the third stage; Part D. Biological Determinands,” Baltic Sea Environ. Proc. D, No. 27, 161 (1988).

    Google Scholar 

  23. HELCOM, 2009, “Eutrophication in the Baltic Sea—An integrated thematic assessment of the effects of nutrient enrichment and eutrophication in the Baltic Sea region,” Baltic Sea Environ. Proc. B, No. 115, 1–148 (2009).

    Google Scholar 

  24. S. Hietanen, A. O. Laine, and K. Lukkari, “The complex effects of the invasive polychaetes Marenzelleria spp. on benthic nutrients dynamics,” J. Exp. Mar. Biol. Ecol. 352, 89–102 (2007).

    Article  Google Scholar 

  25. M. Karjalainen, “Fate and effects of Nodularia spumigena and its toxin, nodularin, in Baltic Sea planktonic food webs,” Finn. Inst. Mar. Res.-Contrib., No. 10, 1–34 (2005).

    Google Scholar 

  26. K. Karlson, E. Bonsdorff, and R. Rosenberg, “The impact of benthic macrofauna for nutrient fluxes from Baltic Sea sediments,” Ambio 36(2–3), 161–167 (2007).

    Article  Google Scholar 

  27. O. M. Karlsson, P. O. Jonsson, D. Lindgren, et al., “Indications of recovery from hypoxia in the inner Stockholm Archipelago,” Ambio 39(7), 486–495 (2010).

    Article  Google Scholar 

  28. L. F. Litvinchuk and I. V. Telesh, “Distribution, population structure and ecosystem effects of the invader Cercopagis pengoi (Polyphemoidea, Cladocera) in the Gulf of Finland and the open Baltic Sea,” Oceanologia 48(S), 243–257 (2006).

    Google Scholar 

  29. A. A. Maximov, “Changes of bottom macrofauna in the eastern Gulf of Finland in 1985–2002,” Proc. Estonian Acad. Sci. Biol. Ecol. 52(4), 378–393 (2003).

    Google Scholar 

  30. J. Norkko, D. C. Reed, K. Timmermann, et al., “A welcome can of worms? Hypoxia mitigation by an invasive species,” Global Change Biol. 18(2), 422–434 (2012).

    Article  Google Scholar 

  31. J. M. O’Neil, T. W. Davis, M. A. Burford, and C. J. Gobler, “The rise of harmful cyanobacteria blooms: the potential roles of eutrophication and climate change,” Harmful Algae 14, 313–334 (2012).

    Article  Google Scholar 

  32. H. Pitkänen, “Eutrophication of the Finnish coastal waters: origin, fate and effects of riverine nutrient fluxes,” in National Board of Waters and Environment, Finland. Publications of the Water and Environment Research Institute, Vol. 18, 3–45 (1994).

    Google Scholar 

  33. H. Pitkänen, J. Lehtoranta, and A. Räike, “Internal Nutrient Fluxes Counteract Decreases in External Load: The Case of the Estuarial Eastern Gulf of Finland, Baltic Sea,” Ambio 30(4–5), 195–201 (2001).

    Google Scholar 

  34. H. Pitkänen and P. Välipakka, “Extensive deep water oxygen deficit and benthic phosphorus release in the eastern Gulf of Finland in late summer 1996,” in Proc. Final Seminar of the Gulf of Finland Year 1996 (Helsinki, 1997), pp. 51–59.

    Google Scholar 

  35. Report of SCOR — UNESCO Working Group 17 on Determination of Photosynthetic Pigments (UNESCO, Paris, 1964).

  36. O. P. Savchuk, “Large-scale dynamics of hypoxia in the Baltic Sea,” in Chemical Structure of Pelagic Redox Interfaces: Observation and Modeling (Springer-Verlag, Berlin Heidelberg, 2010), pp. 1–24.

    Google Scholar 

  37. E. Vahtera, D. J. Conley, B. G. Gustafsson, et al., “Internal ecosystem feedbacks enhance nitrogen-fixing cyanobacteria blooms and complicate management in the Baltic Sea,” Ambio 36(2), 186–194 (2007).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Maximov.

Additional information

Original Russian Text © A.A. Maximov, T.R. Eremina, E.K. Lange, L.F. Litvinchuk, O.B. Maximova, 2014, published in Okeanologiya, 2014, Vol. 54, No. 1, pp. 52–59.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maximov, A.A., Eremina, T.R., Lange, E.K. et al. Regime shift in the ecosystem of the eastern Gulf of Finland caused by the invasion of the polychaete Marenzelleria arctia . Oceanology 54, 46–53 (2014). https://doi.org/10.1134/S0001437013060052

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001437013060052

Keywords

Navigation